
© Copyright Microsoft Corporation. All rights reserved.
FOR USE ONLY AS PART OF MICROSOFT VIRTUAL TRAINING DAYS PROGRAM. THESE MATERIALS ARE NOT AUTHORIZED
FOR DISTRIBUTION, REPRODUCTION OR OTHER USE BY NON-MICROSOFT PARTIES.

Microsoft Azure Virtual

Training Day:

Well-Architected

Well-Architected
Overview

Agenda

▪ Why is being well-architected important?

▪ Overview: Microsoft Azure Well-Architected

▪ Overcoming workload quality inhibitors

▪ How to get started? – Well-Architected Review & Azure

Advisor Demo

▪ Resources

Data breaches cost you
—and your customers
Customer PII was the most frequently, and costliest compromised

type of record per latest data breach study*

$3.86M Average total cost of a data breach

80% Number of breaches carried out with customer PII

$150 Customer PII average cost per record

$175
Increased cost per record of customer PII

in breaches caused by a malicious attack

$137,000+
Remote workforce impact on

average total cost of data breaches
*Cost of a Data Breach Report 2020, IBM Security, Ponemon Institute.

https://www.ibm.com/security/digital-assets/cost-data-breach-report/#/

Run Well-Architected cloud workloads—
to create value

Invest in these actions:

▪ Manage budget
▪ Improve workloads security
▪ Increase incident response
▪ Streamline internal processes
▪ Find costly mistakes
▪ Enhance workload performance

To avoid these consequences:

Expenses, losses

Trust

Damages

Well-architect—

optimize workloads for performance

Build workloads with

confidence with proven

best practices

Design performant

workloads using deep

technical guidance

Optimize workloads with

actionable focus areas

Microsoft Well-Architected—
Build and manage high-performing workloads

Security

Performance Efficiency

Operational Excellence

Cost Optimization

Reliability

Azure

Well-Architected

Review

Design

Principles

Azure

Advisor

Reference

Architectures
Documentation

Partners,

Support &

Service

Offers

Azure

Well-Architected

Framework

Building well-architected workloads—
is a shared responsibility

Scope of

Well-Architected

Assessments
Customer application

Customer app or workload, built on the Azure platform

Platform features

Optional Azure capabilities a customer enables – to ensure security, reliability, operability, performance

Platform foundation

Core capabilities built into the Azure platform – how the foundation is designed, operated, and monitored

Business requirements

influence decisions

about workload

architectures

What tradeoff decisions must you

make in a business context?

DEV/TEST WORKLOADS

MISSION-CRITICAL WORKLOADS

SECURING ALL WORKLOADS

Overcoming workload quality inhibitors

Cost

Optimization

▪ No cost and usage monitoring

▪ Unclear on underused/

orphaned resources

▪ Lack of structured billing

management

▪ Budget reductions from lack

of support for cloud adoption

by leadership

Operational

Excellence

▪ No rapid issue identification

▪ No deployment automation

▪ No communication

mechanisms & dashboards

▪ Unclear expectations and

business outcomes

▪ No visibility on root cause

for events

Performance

Efficiency

▪ No monitoring new

services

▪ No monitoring current

workloads health

▪ No design for scaling

▪ Lack of rigor and

guidance for technology

and architecture

selection

Reliability

▪ Unclear on resiliency

capabilities for improved

architecture design

▪ Lack of data back up

practices

▪ No monitoring of current

workload health

▪ No resiliency testing

▪ No support for disaster

recovery

Security

▪ No access control

mechanism

(authentication)

▪ No security threat

detection mechanism

▪ Lack of security thread

response plan

▪ No encryption process

Best practices to drive workload quality

Cost

Optimization

▪ Azure Hybrid Benefit

▪ Reserve Instances

▪ Shutdown

▪ Resize

▪ Move to PaaS

Operational

Excellence

▪ DevOps

▪ Deployment

▪ Monitor

▪ Processes & cadence

Performance

Efficiency

▪ Design for scaling

▪ Monitor performance

Reliability

▪ Define requirements

▪ Test with simulations &

forced failovers

▪ Deploy consistently

▪ Monitor workload health

▪ Respond to failure &

disaster

Security

▪ Identity & access

management

▪ Infra protection

▪ App security

▪ Data encryption &

sovereignty

▪ Security operations

How do you get started?

▪ Map workload architectures across

business priorities

▪ Review technical guidance of

Well-Architected Framework

▪ Assess workload architecture design with

the Well-Architected Review

▪ Consider architecture design tradeoffs to achieve

business goals

▪ Build, deploy and manage Well-Architected,

optimized workloads on Azure

Design & deploy new workloads

▪ Identify optimization opportunities with

the Azure Advisor Score

▪ Understand necessary changes or

past incident occurrences

▪ Review technical guidance of

Well-Architected Framework

▪ Consider architecture design tradeoffs to

achieve business goals

▪ Define & implement technical recommendations

▪ Implement workload optimizations on

a regular cadence

Optimize existing workloads

Optimize existing workloads - Process

Gather

Analyze

Advise

Implement
Implement
recommendations and
continuous process

Collect data to identify
optimization opportunities

Confirm optimization
opportunities

Actionable plan and
recommendations to optimize
your workloads

Next Step: Take the
Well-Architected review

https://aka.ms/wellarchitected/review

▪ This web-based assessment helps improve

the quality of a workload by

▪ Examining the workload across the 5 pillars

of the Azure Well Architected Framework

(Reliability, Cost Optimization, Security,

Operations Excellence, and Performance

Efficiency)

▪ Providing specific guidance to improve

architecture and overcome detected hurdles

effectively

▪ Proactively focusing on the pillar where most

attention is needed

▪ Driving consistency into workload

discussions throughout the team

Using the Azure Well-Architected Review

https://aka.ms/wellarchitected/review

Azure Well-Architected
Review
Assess workloads with the pillars of the

Microsoft Azure Well-Architected Framework:

—Understand the Well-Architected level of

your workload environment.

—Follow technical guidance for next steps of

how to improve the quality of your workloads.

Demo
https://aka.ms/wellarchitected/review

https://aka.ms/wellarchitected/review

Architect and optimize workloads for success

Azure Well-Architected

Review

Well-Architected

Learning Path Azure Architectures

Channel 9 Show

Well-Architected Design

Principles

Azure Well-Architected

Framework
MS Consulting Services

https://aka.ms/thereview
https://aka.ms/architecture/learn
https://docs.microsoft.com/en-us/azure/architecture/browse/
https://aka.ms/azenable
https://aka.ms/wellarchitected/designprinciples
https://aka.ms/architecture/framework

Security Pillar

Microsoft Well-Architected—
Build and manage high-performing workloads

Security

Performance Efficiency

Operational Excellence

Cost Optimization

Reliability

Azure

Well-Architected

Review

Design

Principles

Azure

Advisor

Reference

Architectures
Documentation

Partners,

Support &

Service

Offers

Azure

Well-Architected

Framework

Azure
Security

Operations
Security operations that work for you

Partnerships
Partnerships for a

heterogeneous world

Technology
Enterprise-class

technology

Situation
At a high level, the RxWell solution’s
architecture has three main zones: on-
premises, the cloud, and the end-user apps.
RXR and its partners committed to strict
adherence to the principles of Responsible
AI. All data is anonymized, and only
aggregated data gets stored. Even that
aggregated data is treated as sensitive, and
none of it is shared externally. Meanwhile,
the multilayered security controls of Azure
help keep it all safe.

Solution

“When it came to developing RxWell, there was simply

no other company that had the capability and the

infrastructure to meet our comprehensive data,

analytics, and security needs than Microsoft. With our

partnership, the RxWell program provides our

customers the tools they need to safely navigate the

‘new abnormal’ of COVID-19 and beyond.”
—Scott Rechler, Chairman and CEO, RXR Realty

Impact

“The well-architected Azure framework,

fundamentally addresses things like scalability,

reliability, security, and operational excellence.

Because we started building our solution from day

one on those pillars, that helped us to absorb all

these nuances from the integration perspective.”
—Saurav K. Chandra, Principal Architect for Internet of Things, Infosys

Build and manage proactively secured workloads

Build upon a secure

foundation

Security provides principles to protect, detect, and respond to threats

across your Azure environment.

▪ Design assuming workload failure

with multi-layer protection controls.

▪ Build workloads using zero-trust

principles in both IaaS and PaaS

▪ Embrace Azure’s security

investments, resources, and

compliance certifications

Proactively stay secure with

native controls

▪ Continuously manage your workload

security from a single pane of glass

with Azure Security Center.

▪ Protect your workloads from

malicious attacks with cloud-

native Azure Web Application

Firewall

▪ Manage identity and access for your

workload with Azure Active Directory

Detect and respond to

threats

▪ Leverage large-scale intelligence

from decades of Microsoft security

experience to work with the Microsoft

Intelligent Security Graph, collected from

8 trillion threat signals analyzed daily

▪ Embrace automation with Azure

Defender to get threat protection

for your workload

▪ Establish procedures to identify and

mitigate threats for your workloads with

Azure Sentinel

Build on a secure foundation
Principle: Build a comprehensive strategy
A security strategy should consider investments in culture, processes, and security controls across all system

components. The strategy should also consider security for the full lifecycle of system components including the supply

chain of software, hardware, and services.

Protect customer data

▪ Use Azure Active Directory to
manage access to Azure resources.

▪ Use Azure Key Vault to store
sensitive data such as certificates,
connection strings, and tokens.

▪ The Azure Security Benchmark
provides recommendations to
improve the security of your
workloads, data, and services.

Secure hardware

▪ Azure is hosted on custom-built
hardware with integrated security.

▪ Host Attestation Service ensures that
host machines are trust-worthy
before they're allowed to interact
with customer data.

Test and monitor

▪ Run simulated penetration attacks
to detect system vulnerabilities and
validate defenses.

▪ Classify, protect, and monitor
sensitive data assets using access
control, encryption, and logging.

high-level architecture of the host attestation service

Build upon a secure foundation
Principle: Assume Zero Trust

DDoS protection

DDOS protection tuned

to your application

traffic patterns

Web Application Firewall

Centralized inbound web

application protection

from common exploits

and vulnerabilities

Azure Firewall

Data exfiltration protection

using centralized

outbound and inbound

(non-HTTP/S) network and

application (L3-L7) filtering

Network Security Groups

Distributed inbound &

outbound network

(L3-L4) traffic filtering on

VM, Container or subnet

VNET Integration

Restrict access to Azure

service resources (PaaS) to

only your Virtual Network

Application protection Segmentation

Proactively stay secure with native controls
Principle: Leverage native controls

Native security controls are maintained and supported by the service provider, eliminating or reducing

effort required to integrate external security tooling and update those integrations over time.

Built-in Azure controls

Identity &

access

Apps & data

security

Network

security

Threat

protection

Security

management

In-depth defense

Proactively stay secure with native controls
Principle: Leverage native controls

Azure Security Center

A unified infrastructure security

management system that:

▪ Strengthens the security

posture of your data center

▪ Provides advanced threat

protection across your hybrid

workloads in the cloud—on

Azure, or on premises

Web Application Firewall

▪ Centralized protection and inspection of

HTTP requests to prevent attacks such as

SQL Injection or Cross-Site Scripting.

Azure Active Directory

▪ Microsoft’s cloud-based identity

and access management service,

which helps your employees

securely access resources.

▪ Managed Identities eliminates

the need to store credentials that

could be leaked.

▪ Use Azure AD Connect for

synchronizing Azure AD with

your existing on-premises

directory.

Detect and respond to threats
Principle: Design for resilience

Native security and governance

ASC/Secure Score

Firewall

Web App Firewall

SQL Protection

API Protection

Native threat detection

Multi-cloud

Azure Sentinel

3rd-party

and partners

Microsoft 365 Defender

Email/docs Endpoints

Identities Apps

Azure Defender

SQL Server VMs Containers

Network traffic IoT Apps

XDR

Microsoft Defender

Security

❑ Identity as Primary Access Control

❑ Assign permissions users groups applications

Use built-in roles

❑ Restrict control plane access

❑ Enforce multi-factor verification

❑ Protect all public endpoints

❑ Prevent direct access of virtual machines

Azure Well-Architected
Review
Assess workloads with the pillars of the

Microsoft Azure Well-Architected Framework:

—Understand the Well-Architected level of

your workload environment.

—Follow technical guidance for next steps of

how to create and optimize your workloads.

aka.ms/wellarchitected/review

https://aka.ms/wellarchitected/review

Let’s walk through

some questions for

Security

in the Well-Architected

Review

Have you done a threat analysis of your workload?

Threat modeling is an engineering technique which can be used to help identify threats, attacks,

vulnerabilities and countermeasures that could affect an application. Threat analysis consists of

defining security requirements, identifying threats, mitigating threats, validating threat

mitigation. All of those are needed to ensure proper security of a workload on both the

prevention and reaction fronts.

❑ Threat modeling processes are adopted, identified threats are ranked based on organizational impact, mapped to

mitigations and communicated to stakeholders.

❑ Timelines and processes are established to deploy mitigations (security fixes) for identified threats.

❑ Security requirements are defined for this workload.

❑ Threat protection was addressed for this workload.

❑ Security posture was evaluated with standard benchmarks (CIS Control Framework, MITRE framework etc.).

❑ Business critical workloads, which may adversely affect operations if they are compromised or become unavailable,

were identified and classified.

❑ None of the above.

How is security validated and how do you handle
incident response when breach happens?

If prevention fails and security of the application is breached, proper response and mitigation

can minimize damage and contain the attacker within minimal boundaries.

❑ For containerized workloads, Azure Defender (Azure Security Center) or other third-party solution is used to scan

for vulnerabilities.

❑ Penetration testing is performed in-house, or a third-party entity performs penetration testing of this workload to

validate the current security defenses.

❑ Simulated attacks on users of this workload, such as phishing campaigns, are carried out regularly.

❑ Operational processes for incident response are defined and tested for this workload.

❑ Playbooks are built to help incident responders quickly understand the workload and components, to mitigate an

attack and do an investigation.

❑ There's a security operations center (SOC) that leverages a modern security approach.

❑ A security training program is developed and maintained to ensure security staff of this workload are well-informed

and equipped with the appropriate skills.

❑ None of the above.

Are keys, secrets, and certificates managed in a
secure way?

Secrets like API keys and certificates are sensitive pieces of information that need to be

managed in a secure way - that includes proper storage, encryption and access control.

❑ There's a clear guidance or requirement on what type of keys (PMK - Platform Managed Keys vs. CMK - Customer

Managed Keys) should be used for this workload.

❑ Passwords and secrets are managed outside of application artifacts, using tools like Azure Key Vault.

❑ Access model for keys and secrets is defined for this workload.

❑ A clear responsibility / role concept for managing keys and secrets is defined for this workload.

❑ Secret/key rotation procedures are in place.

❑ Expiry dates of SSL/TLS certificates are monitored and there are renewal processes in place.

❑ None of the above.

Performance Efficiency Pillar

Microsoft Well-Architected—
Build and manage high-performing workloads

Security

Performance Efficiency

Operational Excellence

Cost Optimization

Reliability

Azure

Well-Architected

Review

Design

Principles

Azure

Advisor

Reference

Architectures
Documentation

Partners,

Support &

Service

Offers

Azure

Well-Architected

Framework

Build and manage—scalable, efficient workloads
Design and manage workloads that scale according to load changes, and efficient systems,

processes, and resources

Tools to provide

scalability

▪ Manage resource scaling with Azure

SQL Database and Azure App

Services—or scale dynamically with

demand with Azure Autoscale

▪ Optimize your network and storage

with Azure Cosmos DB, Azure Traffic

Manager, and Azure Cache for Redis

Efficient architecture

tradeoffs

• Design parts of the process to be

discrete and decomposable to

maximize compute resources, and take

microservices architecture into account

Active response

to performance issues

▪ Evaluate health levels of workloads with

Azure Monitor and Log Analytics to

provision resources dynamically, and

scale to match demand

▪ Assess and remediate deep application

performance issues and trends with

Azure Application Insights

▪ Embrace a data-driven culture to deliver

timely insights across data to your entire

organization

Client

API

Gate

way

Service

Service

Service

Service

Management/Orchestration

Microservices DevOps

Optimal service execution
Principle: Invest in capacity planning

▪ Establish baselines for your
application and its supporting
infrastructure

▪ Always test the effect on
performance when code or
infrastructure changes are
made

▪ Monitor typical and peak
system loads to provide
visibility on operational peaks
outside designed limits

Test continuously

▪ Test for expected loads because of
planned events, for example, sales
promotions, or holidays

▪ Plan for unexpected political,
economic, and weather events

▪ Choose paired regions, and ensure
that all regions can adequately scale
to maximize uptime

Anticipate load
fluctuations

▪ Review service-level agreements

(SLAs) of similar services to calculate

the best fit for your application

▪ Consider the effects of business

requirements when making trade-offs

between cost and performance

▪ Use cost calculators to estimate initial

and operational costs

Carefully evaluate
services and costs

Efficient architecture tradeoffs
Principle: Run performance testing in the scope of development

Distributed systems
require more effort

▪ Evaluate the systemic effect of

each application—its supporting

services, and the latency between

application layers

▪ Ensure that all services can scale to

support loads, and that one

service will not be a bottleneck

▪ Services may need to scale

differently under loads

Test & tune
performance

▪ Establish an SLA that defines

performance targets for latency,

number of requests, and exception

rate for each workload

▪ Use proven best practices such as

properly instrumenting code,

monitoring multiple load

percentages, and systemic

troubleshooting

Avoid performance
antipatterns

▪ Performance antipatterns are

common, defective processes and

implementations within

organizations—likely to cause

scalability problems when an

application is under pressure

▪ Antipatterns may be obvious, for

example, the inability to scale from

on-premises to the cloud

Active response to performance issues
Principle: Continuously monitor the application and supporting infrastructure

▪ Comprehensive solution for

collecting, analyzing, and acting

on telemetry from your cloud

and on-premises environments.

▪ Helps to maximize the

availability and performance of

applications and services

Azure Monitor

▪ Edit and run log queries from data

collected by Azure Monitor Logs,

and interactively analyze the results

▪ Retrieve records matching precise

criteria, identify trends, analyze

patterns, and provide a variety of

data insights

Log analytics

▪ Provides visibility into app

performance and utilization

patterns

▪ Monitors various data sources,

including request, response, and

failure rates, exceptions, page

views, and load performance

Application insights

Scaling design

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Azure Well-Architected
Review
Assess workloads with the pillars of the

Microsoft Azure Well-Architected Framework:

—Understand the Well-Architected level of

your workload environment.

—Follow technical guidance for next steps of

how to create and optimize your workloads.

aka.ms/wellarchitected/review

https://aka.ms/wellarchitected/review

Let’s walkthrough some

questions for

Performance Efficiency

in the Well-Architected

Review

What design considerations have you made for
performance efficiency in your workload?

As traffic fluctuates into your application the number of underlying resources that you need

will vary over time.

❑ The workload is deployed across multiple regions.

❑ Regions were chosen based on location, proximity to users, and resource type availability.

❑ Paired regions are used appropriately.

❑ You have ensured that both (all) regions in use have the same performance and scale SKUs that are currently leveraged in the primary

region.

❑ Within a region the application architecture is designed to use Availability Zones.

❑ The application is implemented with strategies for resiliency and self-healing.

❑ Component proximity is considered for application performance reasons.

❑ The application can operation with reduced functionality or degraded performance in the case of an outage.

❑ You choose appropriate datastores for the workload during the application design.

❑ Your application is using a micro-service architecture.

❑ You understand where state will be stored for the workload.

❑ None of the above.

How have you modeled the health of your workload?

❑ Application and resource level logs are aggregated in a single data sink or able to be cross-queried.

❑ A health model is used to qualify what 'healthy' and 'unhealthy' states represent for the application.

❑ Critical system flows are used to inform the health model.

❑ The health model can distinguish between transient and non-transient faults.

❑ The health model can determine if the workload is performing at the expected targets.

❑ Retention times for logs and metrics been defined and housekeeping mechanisms are configured.

❑ Long-term trends are analyzed to predict performance issues before they occur.

❑ None of the above.

How are you benchmarking your workload?

❑ You have identified goals or a baseline for workload performance.

❑ Performance goals are based on device and/or connectivity type as appropriate.

❑ You have defined an initial connection goal for your workload.

❑ There is a goal defined for complete page load times.

❑ You have defined goals for an API (service) endpoint complete response.

❑ There are goals defined for server response time.

❑ You have goals for latency between the systems & microservices of your workload.

❑ There are goals on database query efficiency.

❑ You have a methodology to determine what acceptable performance is.

❑ None of the above.

Operational Excellence Pillar

Microsoft Well-Architected—
Build and manage high-performing workloads

Security

Performance Efficiency

Operational Excellence

Cost Optimization

Reliability

Azure

Well-Architected

Review

Design

Principles

Azure

Advisor

Reference

Architectures
Documentation

Partners,

Support &

Service

Offers

Azure

Well-Architected

Framework

Build, deploy, and manage workloads—
with trustworthy processes

Agile and accurate

processes

Focused and assertive

application monitoring

Continuous

improvement

• Dive deep into your workload's

information with Log Analytics for

infrastructure and with Azure

Application Insights for application

trends

• Manage the health of your system

and activity logging by consuming

core monitoring insights provided

by Azure Monitor

• Enjoy the flexibility of creating agile

and independent workloads with

microservices and loosely coupled

architectures

• Use Chaos Engineering practices and

run regular tests to reach higher

levels of maturity and operational

effectiveness.

• Reduce process risks by automating

operational tasks and deployments

with Azure Automation, Azure CLI

and Azure PowerShell

• Apply DevOps to break down silos

between development and operations

across your organization

• Build and test workloads with

Continuous Integration and

Continuous Delivery (CI/CD) both in

development and production stages

• Perform extensive automated testing

with Azure Pipelines or manual testing

with Azure Testing Plans

Agile and accurate processes
Principle: Optimize build and release processes

Infrastructure as Code

• Define the entire Infrastructure as

Code just as you define your

application

• Increase accuracy and reduce

process risks preventing

configuration drift

• Enable easy recreation of new

environments, e.g., for

developing new features

Continuous Integration

& Continuous Delivery

• Build and test workloads

with Continuous Integration

and Continuous Delivery

(CI/CD) both in development and

production stages, to achieve a

single and consistent way of

building and deploying.

• Eliminate error-prone manual

interventions

• Versioning of CI/CD pipelines for

traceability of changes

Automated testing

• Perform extensive automated

testing to ensure a stable code

base and resource composition

before deploying to critical

systems

• Achieve a faster time-to-ship

with fewer errors

Focused and assertive application monitoring
Principle: Monitor system and understand operational health

Monitor build and

release processes

• Give developers early feedback

on pushed code changes

• Avoid outages caused by the

rollout of new features

Monitor infrastructure

and application health

• Build confidence in the overall health of

your workload

• Dive deep into instrumentation with

Log Analytics for infrastructure

monitoring

• Instrument your code to collect all

relevant events and metrics

• Use comprehensive dashboards that are

tailored to your audiences

• Leverage Azure Application Insights for

observing application trends

Understand workload health

to meet business goals

• Understand the business impact of

reduced workload health

• Correlate events and metrics across

different parts of your solution

• Respond to issues with self-healing

capabilities

Continuous improvement
Principle: Use loosely coupled architecture

Strive for a true

DevOps model

• Apply DevOps to break down silos

between development and operations

across your organization..

• Run agile and independent teams that

are in charge of developing and running

their parts of the workload

• Limit impact of issues by having clear

boundaries between services

Microservices design

• Enjoy the flexibility of creating agile

and independent workloads with microservices.

Continuous improvement
Principle: Rehearse recovery and practice failure

Rehearse recovery

• Only tested recovery procedures will

work in times of emergency

• Validate operation runbooks

• Run regular tests and conduct dry

runs of failover scenarios

Practice failure

• Test your workload with injected

faults in a safe environment

• Use Chaos Engineering practices

to reach higher levels of maturity

• Employ a Red Team to find issues

and weak points

Continuous improvement
Principle: Embrace operational improvement

Evolve processes

• Establish well-defined owners and playbooks

for procedures and tasks to optimize

operational effectiveness.

• Establish regular cadences for testing

operational procedures and tasks.

• Review operational incidents to improve

operational effectiveness.

• Establish Root Cause Analysis processes.

Optimizing inefficiencies through

automation

• Save time, reduce risks and avoid errors by automating

operational tasks or any deployments that may occur

on a schedule, response to events/monitoring alert, or

ad-hoc based on external factors.

• Automate deployments with Infrastructure as Code to

define the infrastructure that needs to be deployed.

• Optimize workload configurations by automating

software installs, adding data to a database, updating

networking and other actions.

Automation
Reduce toil, improve efficiency, and ensure consistency

Infrastructure

deployment checklist

Infrastructure

configuration checklist
Operational

task checklist

Infrastructure deployment

❑ declarative over imperative
❑

❑

❑

❑ repeatable infrastructure

❑ Avoid configuration drift

❑ Dynamically provision

❑ disaster recovery plan

Infrastructure configuration

❑ Azure data plane

❑ automation
❑

❑

❑

❑ Configuration
❑

❑

❑

Operational task

❑ on demand on a schedule through

a webhook

❑ Use Azure Functions

❑ Configure Azure Monitor

❑ Configure Azure Kubernetes Service
❑

❑

Azure Well-Architected
Review
Assess workloads with the pillars of the

Microsoft Azure Well-Architected Framework:

—Understand the Well-Architected level of

your workload environment.

—Follow technical guidance for next steps of

how to create and optimize your workloads.
aka.ms/wellarchitected/review

https://aka.ms/wellarchitected/review

Let’s walkthrough some

questions for

Operational Excellence

in the Well-Architected

Review

How do you interpret the collected data to inform
application health?

Log aggregation technologies should be used to collate logs and metrics across all workload

components for later evaluation. Resources that logs are captured for may include Azure IaaS

and PaaS services as well as 3rd-party appliances such as firewalls or anti-malware solutions

used in the workload.

• A log aggregation technology, such as Azure Log Analytics or Splunk, is used to collect logs and metrics from Azure

resources

• Azure Activity Logs are collected within the log aggregation tool

• Resource-level monitoring is enforced throughout the application

• Logs and metrics are available for critical internal dependencies

• Log levels are used to capture different types of application events.

• There are no known gaps in application observability that led to missed incidents and/or false positives.

• The workload is instrumented to measure customer experience.

• None of the above.

How are you managing the configuration of the
workload?

Cloud-based applications often run on multiple virtual machines or containers in multiple

regions and use multiple external services. How do you manage and store all your app's

configuration settings, feature flags, and secure access settings?

❑ You monitor and take advantage of new features and capabilities of underlying services used in your workload.

❑ Application configuration information is stored using a dedicated management system such as Azure App

Configuration or Azure Key Vault.

❑ Soft-Delete is enabled for your keys and credentials such as things stored in Key Vaults and Key Vault objects.

❑ Configuration settings can be changed or modified without rebuilding or redeploying the application.

❑ Passwords and other secrets are managed in a secure store like Azure Key Vault or HashiCorp Vault.

❑ The application uses Azure Managed Identities.

❑ The expiry dates of SSL certificates are monitored and there are processes in place to renew them.

❑ Components are hosted on shared application or data platforms as appropriate.

❑ Your workload takes advantage of multiple Azure subscriptions.

❑ The workload is designed to leverage managed services.

❑ None of the above.

What operational considerations are you making
regarding infrastructure deployment?

As you provision and update Azure resources, application code, and configuration settings, a

repeatable and predictable process will help you avoid errors and downtime.

❑ The entire application infrastructure is defined as code

❑ No operational changes are performed outside of infrastructure as code

❑ Configuration drift is tracked and addressed

❑ The process to deploy infrastructure is automated

❑ Critical test environments have 1:1 parity with the production environment

❑ Direct write access to infrastructure is not possible and all resources are provisioned or configured through IaC

processes.

❑ None of the above.

Reliability Pillar

Microsoft Well-Architected—
Build and manage high-performing workloads

Security

Performance Efficiency

Operational Excellence

Cost Optimization

Reliability

Azure

Well-Architected

Review

Design

Principles

Azure

Advisor

Reference

Architectures
Documentation

Partners,

Support &

Service

Offers

Azure

Well-Architected

Framework

The what—

▪ Ensuring availability of services =
the goal for production systems.

▪ End goal = Maintain reliable
systems with the appropriate level
of availability (uptime).

The how—

▪ How production systems achieve reliability.

▪ End goal = not to avoid all failures but to
respond to failure in ways that avoid
downtime and data loss.

Why is reliability important?
Because avoiding failure is impossible in the public cloud

Applications require resilience to respond to failures and deliver reliability

Reliability Resilience

Situation: Solution: Impact:

“We’ve used Azure to build a resilient platform and help countless people get quick

and easy healthcare access they can count on.”

Push Doctor, a patient/doctor video

consultation platform based in the

United Kingdom, needed highly

available and scalable infrastructure

that would provide the reliability its

patients need to access remote

healthcare support on their terms.

— Paul Smith, Enterprise Architect, Push Doctor

Using Microsoft Azure platform as a

service resources such as Azure App

Service, Push Doctor’s platform is

now instantly scalable and highly

secure, with an impressive 99.99

percent uptime. And thanks to

duplicated workloads, it can

seamlessly manage failovers.

Push Doctor can now match patients

with a general practitioner in a

matter of hours, helping to

potentially save the lives of people

who would have otherwise waited

much longer for a consultation—a

service that has proved invaluable

during the COVID-19 crisis.

Customer:

Push Doctor

Industry:

Professional Services

Size:

50-999 employees

Country:

United Kingdom

Products and services:

Microsoft Azure

Microsoft Azure App Service

Microsoft Azure Application Gateway

Microsoft Azure Availability Zones

Microsoft Azure Monitor

Microsoft Azure Service Bus

Microsoft Azure SQL Database

Microsoft Power BI

Read full story here

https://customers.microsoft.com/en-us/story/818901-push-doctor-professional-services-azure

Building reliable systems is a shared responsibility

Your application

Your app or workload, built on the Azure platform.

Resiliency features

Optional Azure capabilities you can enable as needed—high availability, disaster recovery, and backup.

Reliable foundation

Core capabilities built into the Azure platform – how the foundation is designed, operated,
and monitored to ensure availability.

Scope of
Reliability

Reviews

Building reliable applications in the cloud
Enable systems to recover from failures and continue to function

▪ Use Availability Zones where applicable

to improve reliability and optimize

costs.

▪ Design applications to operate when

impacted by failures.

▪ Use the native resiliency capabilities of

PaaS to support overall app reliability.

▪ Validate that required capacity is within

Azure service scale limits and quotas.

Design for reliability

▪ Test regularly to validate existing

thresholds, targets and assumptions.

▪ Verify how the end-to-end workload

performs under failure conditions.

▪ Conduct load testing with expected

peak volumes to test scalability and

performance under load.

▪ Perform chaos testing by injecting

faults.

Testing overall availability

& resiliency

▪ Define alerts that are actionable and

effectively prioritized.

▪ Create alerts that poll for services

nearing their limits and quotas.

▪ Use application instrumentation to

detect and resolve performance

anomalies.

▪ Troubleshoot issues to gain an overall

view of application health.

Overall monitoring & diagnostics

Design for reliability
Principle: design applications to be resistant to failures

▪ If greater failure isolation than

Availability Zones alone can offer, you

should consider deploying to

multiple regions.

▪ Multiple regions should be used for

failover purposes in a disaster state.

▪ Additional costs—data, networking

and the Azure Site Recovery service

should be considered.

Use Availability Zones

within a region
Design for failure recovery

▪ Resilient application architectures

should be designed to recover

gracefully from failures in alignment

with defined reliability targets.

▪ Define an availability strategy to

capture how the application remains

available when in a failure state.

▪ Define a Business Continuity Disaster

Recovery strategy for the application

and/or its key scenarios.

▪ Use Platform as a Service (PaaS),

which offers native resiliency

capabilities to support overall

application reliability.

▪ Design your application to

automatically scale in and out.

▪ Review Azure subscription and

service limits to validate that required

capacity is within quotas.

Criteria for improving

application reliability

Test for availability and resiliency
Principle: define, automate, and test operational processes

▪ Simulation testing involves creating

real-life situations and demonstrates

the effectiveness of proposed

solutions.

▪ Use fault injection testing to check

the system resiliency during failures—

by triggering failures or by simulating

them.

▪ Load testing is crucial for identifying

failures that only happen under load,

(e.g., an overwhelmed back-end

database, or service throttling).

End-to-end workload

testing

Build high availability &

resiliency testing into strategy

▪ Resilient application architectures

should be designed to recover

gracefully from failures in alignment

with defined reliability targets.

▪ Define an availability strategy to

capture how the application remains

available when in a failure state.

▪ Define a Business Continuity Disaster

Recovery strategy for the application

and/or its key scenarios.

▪ Create and fully test a disaster

recovery plan using the actual

resources needed to restore

functionality.

▪ Perform an operational readiness test

for failover to the secondary region

and for failback to the primary region.

▪ Codify the steps required to recover

or failover to a secondary region to

limit the impact of an outage.

Automate testing across BCDR

strategy & prepare for failure

Monitoring application health
Principle: define, automate, and test operational processes

▪ Azure Service Health provides a view

into the health of Azure services and

regions, as well as communications

about outages and planned

maintenance activities.

▪ Azure Resource Health provides

information about the health of

individual and is highly useful when

diagnosing unavailable resources.

▪ Azure dashboards provides a

consolidated view of data from

Application Insights, Log Analytics,

Azure Monitor metrics, and Service

Health.

Azure services & resources

alerts & dashboards

Scaling subscription &

service targets

▪ If your application requires more

storage accounts than are currently

available in your subscription, create

a new subscription with additional

storage accounts.

▪ Identify scalability targets for VMs

including VM size, number of disks,

CPU, and memory.

▪ To avoid data throttling, review your

Azure SQL Database requirements to

ensure that they are adequate.

▪ Create and fully test a disaster recovery

plan using the actual resources needed

to restore functionality.

▪ Perform an operational readiness test

for failover to the secondary region

and for failback to the primary region.

▪ Codify the steps required to recover or

failover to a secondary region to limit

the impact of an outage.

Fully test BCDR plan

Azure Well-Architected
Review
Assess workloads with the pillars of the

Microsoft Azure Well-Architected Framework:

—Understand the Well-Architected level of

your workload environment.

—Follow technical guidance for next steps of

how to create and optimize your workloads.
aka.ms/wellarchitected/review

https://aka.ms/wellarchitected/review

Let’s walkthrough some

questions for

Reliability

in the Well-Architected

Review

What reliability targets and metrics have you
defined for your application?

Availability targets, such as Service Level Agreements (SLA) and Service Level Objectives (SLO), and

Recovery targets, such as Recovery Time Objectives (RTO) and Recovery Point Objectives (RPO),

should be defined and tested to ensure application reliability aligns with business requirements.

❑ Recovery targets to identify how long the workload can be unavailable (Recovery Time Objective) and how much data is

acceptable to lose during a disaster (Recovery Point Objective).

❑ Availability targets such as Service Level Agreements (SLAs) and Service Level Objectives (SLOs).

❑ Availability metrics to measure and monitor availability such as Mean Time To Recover (MTTR) and Mean Time Between

Failure (MTBF).

❑ Composite SLA for the workload derived using the Azure SLAs for all relevant resources.

❑ SLAs for all internal and external dependencies.

❑ Independent availability and recovery targets for critical application subsystems and scenarios.

❑ None of the above.

How have you ensured that your application
architecture is resilient to failures?

Resilient application architectures should be designed to recover gracefully from failures in alignment

with defined reliability targets.

❑ Deployed the application across multiple regions.

❑ Removed all single points of failure by running multiple instances of application components.

❑ Deployed the application across Availability Zones within a region.

❑ Performed Failure Mode Analysis (FMA) to identify fault-points and fault-modes.

❑ Planned for component level faults to minimize application downtime.

❑ Planned for dependency failures to minimize application downtime.

❑ None of the above.

How do you monitor and measure application health?

Monitoring and measuring application availability is vital to qualifying overall application

health and progress towards defined reliability targets.

❑ The application is instrumented with semantic logs and metrics.

❑ Application logs are correlated across components.

❑ All components are monitored and correlated with application telemetry.

❑ Key metrics, thresholds, and indicators are defined and captured.

❑ A health model has been defined based on performance, availability, and recovery targets and is represented

through monitoring dashboard and alerts.

❑ Azure Service Health events are used to alert on applicable Service level events.

❑ Azure Resource Health events are used to alert on resource health events.

❑ None of the above.

Cost Optimization Pillar

Microsoft Well-Architected—
Build and manage high-performing workloads

Security

Performance Efficiency

Operational Excellence

Cost Optimization

Reliability

Azure

Well-Architected

Review

Design

Principles

Azure

Advisor

Reference

Architectures
Documentation

Partners,

Support &

Service

Offers

Azure

Well-Architected

Framework

Cost optimization =
top cloud initiative for the fifth year running

Situation: Solution: Impact:

H&R Block Customer Story

Customer:

H&R Block

Industry:

Professional Services

Size:

10,000+ employees

Country:

United States

Products and services:

Microsoft Azure

Microsoft Azure Advisor

Microsoft Azure Cost Management and

Billing

Microsoft Azure Well-Architected

Framework

"Our monthly spend year-over-year is nearly flat, while we now have approximately 30 percent

more of our total compute in the cloud. Thanks to our partnership with Microsoft, our team has

learned valuable techniques and strategies to continue optimizing our spend."

—Paul Clark, Director of Cloud, H&R Block

As a leader in the effort to

modernize the tax industry, H&R

Block wanted to optimize its

cloud infrastructure, and provide

better service for its customers.

By engaging with its Microsoft account

team and operationalizing conceptual

pillars of the Azure Well-Architected

Framework, the company was able to

optimize its investment—replatforming

to cloud-native services and

modernizing its operating models.

H&R Block is now equipped to take

control of its monthly spend and

able to move its total compute to

the cloud, using its capabilities to

benefit its business and customers.

Optimize costs with tools, offers, and guidance
Cost optimization offers guidelines—accelerating time to market, while avoiding
capital-intensive solutions

Understand and

forecast your costs

▪ Monitor your bill, set budgets, and

allocate spending to teams and

projects with Azure Cost

Management + Billing

▪ Forecast costs for future

investments with the Azure pricing

and TCO calculator

Cost optimize your

workloads

▪ Optimize your resources with Azure

Advisor

▪ Follow best practices for workload

design with the Azure Well-

Architected Framework

▪ Save with Azure offers and licensing

terms like the Azure Hybrid Benefit

and Reservations

Control your costs

▪ Establish spending objectives and

policies using the Microsoft Cloud

Adoption Framework for Azure

▪ Implement cost controls in Azure

Policy so your teams can go fast

while complying with policy

Optimize your costs with tools, offers, and guidance
Principle: Monitor and optimize

Use alerts to monitor

usage and spending

▪ Budget alerts notify you when

spending reaches predetermined

thresholds.

▪ Credit alerts notify you when your

Azure Prepayment is consumed.

▪ Department spending quota alerts

notify you when quotas are

reached.

Auto-scaling policies

provide cost savings

▪ When workloads are highly

variable, choose smaller VM

instances, then scale out, rather

than up, to get the needed

performance.

▪ Many applications can be made

stateless, then auto-scaled for cost

benefits.

Reserved instances

can reduce costs

▪ Use Azure Reservations to lower

costs by pre-paying for capacity.

▪ Analyze existing pay-as-you-go

usage data in Azure Portal before

opting into reserved instances.

Optimize your costs with tools, offers, and guidance
Principle: Keep within cost constraints

Develop a cost model Capture requirements Cost tradeoffs

▪ Map your organization's

needs to specific offerings.

▪ Start with high-level

requirements before

considering design.

▪ Geographic and security

decisions can have a huge

impact on your costs.

▪ Break down high-level

goals into functional

requirements,

▪ For each functional

requirement, define

metrics to estimate costs.

▪ Determine if the cost of

high availability exceeds

acceptable downtime.

▪ Increasing security of the

workload will increase cost.

▪ Systems monitoring and

automation might increase

the cost initially but will

reduce cost over time.

Design Checklist
Principle: Aim for scalable costs

❑ Consider tradeoffs security scalability resilience operability

❑ Choose managed services

❑ consumption-based pricing pre-provisioned costs

❑ appropriate subscription

❑ proof-of-concept

❑ Optimize

❑ Reduce server load

Azure Well-Architected
Review
Assess workloads with the pillars of the

Microsoft Azure Well-Architected Framework:

—Understand the Well-Architected level of

your workload environment.

—Follow technical guidance for next steps of

how to create and optimize your workloads.
aka.ms/wellarchitected/review

https://aka.ms/wellarchitected/review

Let’s walk through some

questions for

Cost Optimization

in the Well-Architected

Review

How are you modeling cloud costs?

Cost modeling is an exercise where you create logical groups of cloud resources that are

mapped to the organization's hierarchy and then estimate costs for those groups. The goal of

cost modeling is to estimate the overall cost of the organization in the cloud.

❑ Cloud costs are being modeled for this workload.

❑ The price model of the workload is clear.

❑ Critical system flows through the application have been defined for all key business scenarios

❑ There is a well-understood capacity model for the workload.

❑ Internal and external dependencies are identified, and cost implications understood.

❑ Cost implications of each Azure service used by the application are understood

❑ The right operational capabilities are used for Azure services.

❑ Special discounts given to services or licenses are factored in when calculating new cost models for services being

moved to the cloud.

❑ Azure Hybrid Use Benefit is used to drive down cost in the cloud.

❑ None of the above.

How are you monitoring costs?

Consider the metrics for each resource in the workload. For each metric, build alerts on baseline

thresholds.

❑ Alerts are set for cost thresholds and limits.

❑ Specific owners and processes are defined for each alert type.

❑ Application Performance Management (APM) tools and log aggregation technologies are used to collect logs and

metrics from Azure resources.

❑ Cost Management Tools (such as Azure Cost Management) are being used to track spending in this workload.

❑ None of the above.

How do you ensure that cloud services are
appropriately provisioned?

Deployment of cloud resources of a workload is known as provisioning.

❑ Performance requirements are well-defined.

❑ Targets for the time it takes to perform scale operations are defined and monitored.

❑ The workload is designed to scale independently.

❑ The application has been designed to scale both in and out.

❑ Application components and data are split into groups as part of your disaster recovery strategy.

❑ Tools (such as Azure Advisor) are being used to optimize SKUs discovered in this workload.

❑ Resources are reviewed weekly or bi-weekly for optimization.

❑ Cost-effective regions are considered as part of the deployment selection.

❑ Dev/Test offerings are used correctly.

❑ Shared hosting platforms are used correctly.

❑ None of the above.

Next steps

▪ Assess your workload with a Well-Architected Review:

https://aka.ms/wellarchitected/review

▪ Gather technical recommendations and optimize deployments

with Azure Advisor:

https://aka.ms/azureadvisor

▪ Learn how to build great solutions with Well-Architected Framework:

https://docs.microsoft.com/en-us/learn/

https://aka.ms/wellarchitected/review
https://aka.ms/azureadvisor
https://docs.microsoft.com/en-us/learn/

