Microsoft
SQL Server 2017

Livre blanc technique

Date de publication : septembre 2017

S’applique à : Microsoft SQL Server 2017 pour Windows, Linux et les conteneurs Docker
Droits d’auteur

Les renseignements que contient ce document représentent l’opinion actuelle de Microsoft Corporation en ce qui concerne les questions abordées à la date de publication. Microsoft étant soumise aux variations du marché, ces renseignements ne doivent pas être interprétés comme étant un engagement de la part de Microsoft. En outre, Microsoft ne peut garantir l’exactitude des renseignements fournis après la date de cette publication.

Ce livre blanc est publié à titre d’information seulement. MICROSOFT N’OFFRE AUCUNE GARANTIE EXPRESSE, TACITE OU PRÉVUE PAR LA LOI QUANT AUX RENSEIGNEMENTS QUE CONTIENT CE DOCUMENT.

Il est de la responsabilité de l’utilisateur de se conformer à toutes les lois relatives aux droits d’auteur applicables. Sans limitation des droits d’auteur, aucune partie de ce document ne peut être reproduite, stockée ou ajoutée à un système de recherche documentaire ou transmise sous quelque forme ou par quelque moyen que ce soit (électronique, mécanique, photocopie, enregistrement ou autre) ou pour quelque raison que ce soit sans autorisation écrite de Microsoft Corporation.

Microsoft peut posséder des brevets, des demandes de brevets, des marques de commerce, des droits d’auteur ou d’autres droits de propriété intellectuelle concernant l’objet du présent document. Sauf indication contraire explicite provenant d’une entente de licence écrite de Microsoft, la fourniture de ce document ne confère aucune licence relative à ces brevets, marques de commerce, droits d’auteur ou autres propriétés intellectuelles.

Toutes autres marques de commerce sont la propriété de leurs propriétaires respectifs.
Table des matières

Sommaire .. 5

Paysage de l’industrie et tendances .. 6

SQL Server 2017 : un pas de plus vers l’avenir ... 7

La puissance de SQL Server maintenant offerte sur Linux et sur conteneurs 7

 Expérience Linux native avec prise en charge des outils SQL Server existants 8

 Abstraction de plateforme avec conteneurs .. 9

 Mise en place de pratiques d’opérations de développement à l’aide de conteneurs 9

SQL Server 2017 en mode opérationnel pour les données relationnelles et graphiques 10

 Traitement des transactions en ligne en mémoire .. 10

 Améliorations de l’OLTP en mémoire dans SQL Server 2017 .. 12

 Analyse opérationnelle en temps réel à l’aide du traitement transactionnel-analytique hybride 12

 Gamme de fonctionnalités de traitement adaptatif des requêtes 13

 Correction automatique des plans .. 14

Reconstruction d’index en ligne avec reprise .. 14

SQL Graph ... 14

Gouverneur de ressources .. 16

Une haute disponibilité essentielle sur n’importe quelle plateforme 17

Des instances de grappes de basculement AlwaysOn qui offrent une haute disponibilité 17

Bases de données à disponibilité élevée grâce aux groupes de disponibilité AlwaysOn 18

Flexibilité pour les architectures de haute disponibilité .. 19

Groupes de disponibilité AlwaysOn pour Linux .. 19

Équilibrage de charge des copies secondaires accessibles en lecture 20

SQL Server 2017 et l’entreposage de données massives ... 21

 Entreposage d’un pétaoctet de données ... 21

 Interrogation de n’importe quel type de données .. 22

 Index columnstore regroupés pour l’entreposage de données .. 23

 Partitionnement de tables .. 23

SQL Server 2017 et la veille stratégique ... 25

 Reporting Services ... 25
Power BI Report Server...26
Analysis Services..28
SQL Server 2017 et les analyses avancées..30
SQL Server 2017, un essentiel pour l’intégration des données et la gestion de l’information........31
SQL Server Integration Services..31
Master Data Services..32
Data Quality Services...32
Sécurité de SQL Server 2017..34
Always Encrypted...34
Chiffrement transparent des données..35
Sécurité au niveau des lignes...35
Masquage dynamique des données..36
Vérification..36
Nuage avec SQL Server 2017..37
Sauvegarde vers Azure..37
SQL Server 2017 sur les machines virtuelles Azure.......................38
Déployez SQL Server en fonction des besoins opérationnels, plutôt que de l’ensemble de fonctionnalités..39
Limites d’échelle des solutions croisées.......................................40
Conclusion..40
Appels à l’action...40
Sommaire

Le monde informatique est en constante évolution et de plus en plus diversifié, particulièrement sur le plan des systèmes d'exploitation, y compris Linux. Le volume de données massives ne cesse de croître, et on prévoit qu'il s'élèvera à 50 Zo d'ici 2020. Les clients investissent dans les données et, s'ils sont en mesure de moderniser leurs applications en y ajoutant des fonctions intégrées d'analyse, ils créent ainsi de nouvelles occasions de stimuler la transformation numérique. Les clients disposent de données non structurées largement accessibles, et ils souhaitent exploiter les données massives pour en tirer de précieux renseignements.

De nos jours, les organisations doivent s'adapter rapidement au changement grâce à de nouvelles technologies qui leur procurent un avantage concurrentiel. Autrement, elles risquent de se laisser devancer par la concurrence. C'est pourquoi il est impératif de tirer pleinement parti des données massives, du nuage et des capacités de veille stratégique, tous éléments qui aident les entreprises à accélérer leur croissance par une prise de décisions intelligente et une exécution rapide.

Les entrepôts de données modernes comprennent à la fois des données structurées (données de traitement transactionnel en ligne, données mobiles, données de planification des ressources de l’entreprise et données sectorielles) et des données non structurées (données graphiques, médias sociaux et Internet des objets). Les clients doivent être en mesure de gérer leurs données opérationnelles et entreposées, en plus de traiter des données massives. Ils doivent disposer de renseignements qui leur permettent d’analyser leurs activités rétrospectivement (veille stratégique) et de se projeter dans l’avenir à l’aide d’algorithmes d’apprentissage automatique (fonctions avancées d’analyse prédictive et prescriptive). Leur entrepôt de données doit permettre de sécuriser leurs données et leurs applications, ainsi que l’accès à ces dernières. Ils doivent également pouvoir décider eux-mêmes de la plateforme, du langage de développement et de l’emplacement qu’ils souhaitent utiliser, que ce soit dans le nuage privé ou public.

Microsoft SQL Server 2017 optimise l’ensemble de votre entrepôt de données en prenant en charge les sources de données structurées et non structurées. Il repose sur les versions antérieures de SQL Server, lesquelles se trouvent en tête de l’industrie depuis quatre ans et ont obtenu les meilleurs résultats aux tests d’évaluation TPC-E. Il peut contenir jusqu’à des pétacots de données, en plus de permettre aux clients de traiter des données massives au moyen de requêtes T-SQL dans PolyBase. SQL Server s’est révélé la base de données la moins vulnérable au cours des sept dernières années. SQL Server 2017 offre des capacités de veille stratégique grâce auxquelles vous pouvez analyser vos renseignements à une fraction du coût, et ce, sur n’importe quel appareil. Il propose également des capacités d’analyse avancées qui prennent en charge les langages de programmation R et Python.

Les développeurs d’applications peuvent créer leurs applications à l’aide de n’importe quel langage, y compris Node.js, .NET, Java et PHP. En outre, ils peuvent déployer leurs solutions sur des plateformes comme Windows, Linux et les conteneurs Docker, et ce, que ce soit dans un nuage privé (sur place), Microsoft Azure, un nuage tiers ou un environnement hybride.
Paysage de l’industrie et tendances

En plus de faire face à un monde en constante évolution, les organisations de TI doivent composer avec de multiples types de données, des langages de développement variés et une combinaison d’environnements sur place, infonuagiques et hybrides. Elles doivent consentir de nombreux efforts pour maintenir ces environnements de plus en plus complexes, en affectant des ressources humaines et en mettant en place des processus afin de garder le rythme tout en réduisant les coûts opérationnels.

Microsoft offre à ses clients la possibilité de choisir la plateforme la mieux adaptée à leurs données et applications. Pour ce faire, Microsoft permet une interopérabilité avec des solutions en code source libre. Par exemple, les clients se tournent de plus en plus vers les distributions Linux telles que Red Hat Enterprise Linux, Ubuntu et SUSE pour gérer leurs charges de travail relationnelles et non relationnelles.

Par ailleurs, Microsoft témoigne de son engagement dans le développement d’applications. Prenons par exemple le projet ouvert .NET core et le module d’extension Visual Studio Code pour SQL Server qui a récemment été lancé sur le marché. De même, les pilotes, les outils de connectivité et les API de SQL Server sont offerts dans pratiquement tout environnement, ce qui vous permet d’intégrer vos applications à SQL Server, quels que soient le langage de programmation ou l’environnement.
SQL Server 2017 : un pas de plus vers l’avenir

SQL Server 2017 repose sur les fonctionnalités de pointe1 de SQL Server 2016 et se distingue notamment dans les domaines suivants :

- **Sécurité** : selon la commission de sécurité publique du NIST (National Institute of Standards and Technology), SQL Server connaît le nombre le plus faible de vulnérabilités de sécurité signalées parmi les principaux fournisseurs de bases de données (NIST 2016).
- **Coût total de possession** : SQL Server possède un coût total de possession considérablement plus bas que de nombreuses solutions de données d’entreprise similaires. Dans certains cas, le coût total de possession pour SQL Server 2016 s’est avéré être aussi bas que 1/12 du coût de produits ou fonctions comparables.

SQL Server 2017 poursuit l’évolution de SQL Server, ajoutant de nouvelles fonctionnalités à l’écosystème de données moderne afin de mieux soutenir et améliorer la gestion des données et les applications fondées sur des données. Les scénarios suivants représentent les usages possibles de SQL Server 2017, en plus de ses nouvelles fonctionnalités.

La puissance de SQL Server maintenant offerte sur Linux et sur conteneurs

SQL Server 2017 intègre le moteur de bases de données relationnelles de pointe de Microsoft à l’écosystème d’entreprise de Linux. Cela comprend notamment SQL Server Agent, la fonction d’authentification Active Directory, des capacités de haute disponibilité et de reprise après sinistre de pointe, ainsi que des fonctions de sécurité de données inégalées. Il est important de noter que SQL Server 2017 sur Linux n’est ni un port ni une réécriture. C’est le système de gestion de base de données relationnelle (SGBDR) de calibre mondial de Microsoft. Il est maintenant offert sur encore plus de systèmes d’exploitation (comme Red Hat Enterprise Linux, SUSE Linux Enterprise Server et Ubuntu), de plateformes infonuagiques et de conteneurs comme Docker.

1 Gartner a classé Microsoft en tant que chef de file détenant la vision la plus exhaustive et offrant la plus grande capacité d’exécution de n’importe quel système de gestion de base de données opérationnel pour deux années consécutives. *Gartner n’apporte son soutien à aucun des fournisseurs, des produits ou des services présentés dans ses publications de recherche et ne conseille pas aux utilisateurs de technologies de limiter leur choix aux fournisseurs ayant obtenu une note élevée ou tout autre titre honorifique. Les publications de recherche de Gartner ne sont que les opinions de l’organisation de recherche de Gartner et ne doivent en aucun cas être considérées comme des déclarations de faits. Gartner décline toute garantie, expresse ou implicite, concernant cette recherche, y compris toute garantie de qualité marchande ou d’adéquation à un usage particulier.*

3 [www.tpc.org, « TTPC-H Result Highlights HPE Proliant DL380 Gen9 », mars 2017](lien)
SQL Server 2017 offre les meilleures fonctionnalités de rendement et de sécurité. D’ailleurs, elles sont désormais offertes sur toutes les plateformes prises en charge, y compris Windows, Linux et des conteneurs. Ces fonctionnalités haute performance accélèrent considérablement l’exploitation d’applications fondées sur des données. Parmi ces fonctionnalités, citons ColumnStore et OLTP en mémoire. La première fournit des capacités de stockage et de traitement des données en colonnes qui accélèrent jusqu’à 10 fois le traitement des requêtes et la compression des données, comparativement au stockage en rangées. La seconde permet de traiter les transactions dans des tables à mémoire optimisée jusqu’à 2,5 fois plus rapidement que dans des tables sur disque. Des fonctions de sécurité telles que la vérification, le chiffrement transparent des données, la sécurité au niveau des lignes, le masquage dynamique des données et la technologie Always Encrypted assurent la sécurité du côté serveur. Ces fonctions simplifient grandement la protection des données contre tout accès non autorisé, sans qu’il soit nécessaire de modifier les applications clientes existantes. La fonction de vérification permet aux équipes de surveiller les accès et de suivre les activités potentiellement suspectes. Le chiffrement transparent des données protège les données au repos (au niveau fichier), tandis que la technologie Always Encrypted sécurise les données en mouvement et au repos. Ces capacités sont offertes sur toutes les éditions de SQL Server. Les organisations peuvent donc choisir leur environnement de déploiement selon leurs besoins opérationnels plutôt qu’en fonction des capacités désirées.

SQL Server 2017 sur Linux n’est ni une réécriture ni un port. SQL Server sur Windows et sur Linux partagent une base de code commune qui accède aux fonctions primaires du système d’exploitation par l’intermédiaire d’une couche d’abstraction de plateforme. Tous les scénarios et toutes les fonctionnalités abordés dans le présent livre blanc ne sont pas encore pris en charge sur Linux. Néanmoins, SQL Server 2017 sur Linux est prêt à prendre en charge les charges de travail transactionnelles et d’entreposage de données, en plus de participer à des groupes de disponibilité. La majorité des charges de travail du moteur de base de données peuvent être déplacées de Windows à Linux sans modification. Microsoft propose des outils tels que l’assistant de migration des données pour vous aider à déplacer des charges de travail existantes dans SQL Server 2017. Pour obtenir plus de renseignements sur les fonctionnalités de SQL Server qui ne sont pas actuellement prises en charge sur Linux, consultez les notes de publication de SQL Server sur Linux.

Expérience Linux native avec prise en charge des outils SQL Server existants

Microsoft s’est efforcée d’offrir une expérience utilisateur native Linux pour SQL Server, en commençant par le processus d’installation. SQL Server 2017 emploie la méthode d’installation standard de paquet pour Linux, utilisant yum pour les distributions basées sur Fedora et apt-get pour les distributions basées sur Debian. Les administrateurs peuvent mettre à jour les instances de SQL Server 2017 sur Linux à l’aide de leurs processus existants de mise à jour et de mise à niveau de paquet.

Le service SQL Server s’exécute en mode natif à l’aide de systemd, et sa performance peut être surveillée par l’intermédiaire du système de fichiers comme prévu. Les chemins de fichiers Linux sont pris en charge dans les instructions et les scripts T-SQL pour effectuer des actions comme définir ou modifier l’emplacement des fichiers de données ou des fichiers de sauvegarde de base de données. Il est possible de gérer la mise en grappe haute disponibilité au moyen de solutions haute disponibilité Linux populaires comme Pacemaker et Corosync.

Une fonction de recherche plein texte est désormais offerte sur Linux. Elle vous permet d’exécuter des requêtes en texte intégral sur des données fondées sur des caractères dans des tables SQL Server. Les requêtes en texte intégral consistent en des recherches linguistiques de données textuelles dans des index plein texte. Les mots et les phrases sont recherchés en fonction des règles d’une langue telle que l’anglais

Abstraction de plateforme avec conteneurs

Mise en place de pratiques d’opérations de développement à l’aide de conteneurs

Les opérations de développement consistent à fournir aux clients d’excellentes applications grâce à des ressources humaines compétentes ainsi que des processus et des outils efficaces. Adopter une approche rationalisée à l’égard du développement des produits (par exemple, en divisant le travail en petits lots et en tenant compte des commentaires des clients) permet d’améliorer le rendement de l’équipe des TI et d’éliminer les problèmes de déploiement4. Comparativement aux défis que pose une approche de développement traditionnelle, ou même une approche agile, les opérations de développement s’imposent de plus en plus comme une pratique exemplaire pour livrer des solutions haute performance sur le marché. Le matériel traditionnel et les installations sur machines virtuelles de SQL Server s’inscrivent difficilement dans ce cadre. SQL Server étant maintenant offert sur des conteneurs, plusieurs pratiques d’opérations de développement sont accessibles aux équipes de développement d’applications fondées sur des données, y compris la capacité de créer une image de conteneur pouvant être utilisée dans n’importe quel environnement.

SQL Server 2017 sur conteneurs est harmonisé avec les principes d’opérations de développement. Certaines pratiques jouent d’ailleurs un rôle essentiel dans la production rapide d’applications critiques et intelligentes, et ce, sans compromettre la rentabilité, la qualité et la satisfaction des clients. D’un environnement de développement et de test à des déploiements à grande vitesse par l’intermédiaire de l’intégration et de la distribution continues, SQL Server sur Linux et sur conteneurs constitue un atout précieux dans la boîte à outils d’opérations de développement des organisations.

SQL Server 2017 en mode opérationnel pour les données relationnelles et graphiques

Traitement des transactions en ligne en mémoire

Fonctionnalité initialement intégrée à SQL Server 2014, la technologie en mémoire de SQL Server améliore de façon importante l’exécution et la latence des capacités de traitement transactionnel en ligne de SQL Server. Elle est conçue pour convenir aux applications de traitement transactionnel les plus exigeantes, et Microsoft a collaboré étroitement avec plusieurs entreprises pour démontrer ces gains. Les fonctionnalités de traitement transactionnel en ligne en mémoire sont les suivantes :

- **Tables à mémoire optimisée** : il existe deux types de tables à mémoire optimisée. Les tables durables sont complètement archivées et demeurent même après le redémarrage du serveur. Les tables non durables s’effacent au redémarrage du serveur. Elles sont généralement utilisées à la place des tables temporaires globales dans la base de données de l’utilisateur ou dans les scénarios où leur conservation n’est pas nécessaire (p. ex., des tables intermédiaires dans un processus d’extraction, de transformation, de chargement [ETL]).

- **Variables de tables à mémoire optimisée** : ces variables sont créées à l’aide des types de tables à mémoire optimisée. Les variables sont stockées en mémoire, ce qui permet un accès plus efficace aux données, car elles utilisent les mêmes algorithmes à mémoire optimisée et les mêmes structures de données que les tables à mémoire optimisée (particulièrement lors de l’utilisation de procédures de stockage compilées de façon native).

- **Procédures stockées compilées en mode natif** : SQL Server peut compiler en mode natif des procédures stockées qui accèdent aux tables à mémoire optimisée. La compilation native accélère l’accès aux données et rend l’exécution des requêtes plus efficace que celle des requêtes interprétées (traditionnelles) de Transact-SQL. Les procédures stockées compilées en mode natif sont analysées et compilées lorsqu’elles sont chargées en tant que fichiers DLL (bibliothèques de liens dynamiques) natifs. Cette approche diffère d’autres procédures stockées qui sont compilées à la première exécution. Celles-ci suivent un plan d’exécution qu’on a créé et qu’on réutilise. De plus, elles font appel à un interprète afin de réaliser l’exécution.

- **Fonctions définies par l’utilisateur (UDF) scalaires compilées en mode natif** : ces fonctions remplacement les UDF scalaires traditionnelles qui n’effectuent aucun accès aux données, réduisant aussi la durée d’exécution des UDF. Les UDF scalaires compilées en mode natif ne peuvent pas accéder à des tables stockées sur un disque. Si l’accès aux données est nécessaire, envisagez de migrer la table dans une table à mémoire optimisée (si aucun accès aux données n’a lieu, la migration n’est pas nécessaire).
L’OLTP en mémoire est conçu selon les principes architecturaux suivants :

- **Optimisez l’accès aux données de la mémoire principale.** Les moteurs de stockage optimisé (tels que le moteur OLTP actuel dans SQL Server) conserveront les données chaudes dans une banque de mémoires principales tampons en fonction de la fréquence des accès. Toutefois, les fonctionnalités d’accès aux données et de modification de celles-ci sont conçues de façon à ce qu’on puisse pager les données à l’intérieur ou à l’extérieur du disque à tout moment. À l’aide de l’OLTP en mémoire, les tables utilisées au sein de la partie d’une application qui effectue le traitement extrême des transactions sont déplacées dans des structures de mémoires principales optimisées. Les autres tables de l’application, comme les détails sur les données de référence ou les données historiques, sont conservées dans des structures traditionnelles de stockage optimisé. Cette approche permet d’optimiser les zones de surcharge en vue de l’utilisation de la mémoire, sans avoir à gérer plusieurs moteurs de données. Les structures de mémoire principale pour l’OLTP en mémoire éliminent le temps-système et l’indirection de la visualisation de stockage optimisé tout en fournissant la totalité des propriétés d’atomicité, de régularité, d’isolation et de durabilité (ACID) qu’on attend d’un système de base de données.

- **Ajoutez des outils en vue de la migration.** Afin de relever les structures de mémoire et les tables qui conviennent à l’utilisation de l’OLTP en mémoire, SQL Server Management Studio comprend des outils conçus pour aider les utilisateurs à faire la transition vers cet OLTP. Parmi ceux-ci, on compte l’analyse de rendement des transactions, qui sert à repérer les objets qui bénéficieraient de la migration, les conseillers de migration, qui facilitent la conversion des tables sur disque en tables à mémoire optimisée et la migration des procédures et fonctions traditionnelles stockées vers des objets compilés en mode natif.

- **Accélérez le traitement de la logique opérationnelle.** L’OLTP en mémoire, les requêtes et la logique des procédures stockées dans Transact-SQL (T-SQL) sont compilées directement dans le code de la machine grâce à des optimisations dynamiques qui sont appliquées au moment de cette compilation. Par conséquent, la procédure stockée peut être exécutée à la vitesse du code natif.

- **Fournissez une mise à l’échelle sans heurts.** L’OLTP en mémoire met en œuvre un mécanisme de contrôle de traitement parallèle hautement évolutif et fait appel à une série de structures ouvertes de données, ce qui élimine les interblocs et les verrouillages traditionnels tout en conservant une bonne sémantique transactionnelle qui assure la cohérence des données.

- **Intégrez à SQL Server.** Une des choses les plus impressionnantes de l’OLTP en mémoire, c’est qu’il apporte des améliorations novatrices dans des capacités de traitement transactionnel sans nécessiter un produit de gestion de données distinct ou un nouveau modèle de programmation. Ainsi, l’utilisateur profite d’une expérience de développeur et d’administrateur de base de données (DBA) intégrée avec les mêmes capacités de T-SQL, de pile cliente, d’outillage, de sauvegarde et restauration et de disponibilité AlwaysOn. En proposant la fonctionnalité en mémoire dans SQL Server, votre coût total de propriété finit par être moins élevé qu’il serait si vous deviez acheter, gérer et entretenir un système distinct pour gérer le traitement en mémoire.
Améliorations de l’OLTP en mémoire dans SQL Server 2017

Améliorations en matière de rendement, de prise en charge et de mise à l’échelle

SQL Server 2017 ajoute des fonctionnalités qui améliorent le rendement et la prise en charge des charges de travail de l’OLTP en mémoire. En outre, il élimine de nombreuses restrictions imposées aux tables et aux procédures stockées afin de faciliter la migration de vos applications et de profiter des avantages que propose l’OLTP en mémoire. Voici quelques améliorations que la solution propose en matière d’évolutivité :

- La limite de huit index dans les tables à mémoire optimisée a été éliminée.
- La restauration de journal de transaction des tables à mémoire optimisée se fait maintenant en parallèle. Cela accélère les temps de récupération et augmente de façon considérable le débit soutenu de la configuration à groupe de disponibilité Always On.
- Le rendement de la reconstruction de répertoires à arbre équilibré (sans grappe) pour les tables MEMORY_OPTIMIZED au cours de la récupération de bases de données a été considérablement optimisé. Cette amélioration réduit grandement le temps de récupération de bases de données lorsqu’on utilise des répertoires sans grappe.
- La commande sp_spaceused est désormais prise en charge par les tables à mémoire optimisée.
- La commande sp_rename est désormais prise en charge par les tables à mémoire optimisée et les modules T-SQL compilés en mode natif.
- L’exécution de la commande ALTER TABLE sur les tables à mémoire optimisée est maintenant nettement plus rapide dans la plupart des cas.
- Les groupes de fichiers à mémoire optimisée peuvent désormais être stockés dans Azure Storage.

Améliorations relatives à Transact-SQL

La surface d’exposition des requêtes dans les modules natifs a été améliorée afin de permettre la prise en charge totale des fonctionnalités JSON. La prise en charge native supplémentaire des constructions de requêtes comme CROSS APPLY, CASE, et TOP (N) WITH TIES est maintenant offerte. Les tables à mémoire optimisée prennent désormais en charge les colonnes calculées.

Analyse opérationnelle en temps réel à l’aide du traitement transactionnel-analytique hybride

Analyse opérationnelle en temps réel à l’aide du traitement transactionnel-analytique hybride (HTAP)
Fonctionnalité offerte depuis SQL Server 2016, l'analyse opérationnelle en temps réel élimine la latence des données des analyses en permettant à une charge de travail de s'exécuter dans un index ColumnStore d'une table, en parallèle avec la charge de travail transactionnelle en cours d'exécution sur la table (également appelée « RowStore »). Auparavant, une charge de travail analytique s’exécutait sur un entreposage de données distinct et était introduite dans un cube en vue du traitement analytique. L’analyse opérationnelle en temps réel est possible parce que les index ColumnStore reflètent les données rowstore, qu’ils sont mis à jour presque instantanément et qu’ils s’exécutent comme une charge de travail distincte dans SQL Server. Ainsi, on peut effectuer l’analyse en temps réel sans être ralenti par les opérations d’entreposage par extraction, transformation et chargement (ETL) lentes et coûteuses. Puisque les données indexées répliquent les données rowstore, l’analyse opérationnelle en temps réel peut s’exécuter en même temps qu’une charge de travail OLTP sans nuire à son rendement.

Ces fonctionnalités d’analyse en temps réel, jumelées avec les capacités des tables à mémoire optimisée de SQL Server, permettent à l’OLTP en mémoire de s’effectuer avec une rapidité sans précédent, créant ainsi une puissante plateforme de traitement transactionnel et analytique hybride (HTAP). Cela permet aux clients de traiter des charges de travail transactionnelles et analytiques de haute performance sur une seule plateforme.

Gamme de fonctionnalités de traitement adaptatif des requêtes

Nouvelle fonction dans SQL Server 2017, le traitement adaptatif des requêtes ajoute de nouvelles capacités qui permettent au processeur de requêtes SQL Server de modifier les sélections de plans en fonction des caractéristiques d’exécution.

Durant le traitement et l’optimisation des requêtes, le processus d’estimation de la cardinalité (EC) estime le nombre de lignes traitées à chaque étape d’un plan d’exécution. Des estimations inexactes peuvent ralentir le temps de réponse aux requêtes, exiger une quantité excessive de ressources (de processeur, de mémoire ou d’E/S) et réduire le débit et le traitement parallèle. Pour améliorer les techniques de CE, SQL Server 2017 a introduit une nouvelle gamme de fonctions : le traitement adaptatif des requêtes (AQP). L’AQP facilite la gestion des problèmes de CE les plus tenaces. Les fonctions suivantes font partie de la gamme de fonctionnalités de l’AQP :

L’exécution imbriquée : matérialise les estimations problématiques des fonctions tabulées à instructions multiples (MSTVF) qui se propagent aux opérations en aval, corrigeant les estimations inexactes et permettant à l’optimiseur de requête de passer en revue les choix relatifs au plan en fonction d’estimations précises. La première version de l’exécution imbriquée couvre les estimations de cardinalité pour les MSTVF.

Le mode de jointures adaptatives par lot : permet de choisir une méthode de jointure par hachage ou de jointure par boucle imbriquée pour une table ColumnStore, qui sera différée jusqu’à la fin de l’analyse de la première entrée de jointure. La jointure adaptative évalue l’entrée et exécute le plus efficace des deux algorithmes de jointure au moment de l’exécution.

Le mode de commentaires sur l’allocation de mémoire par lot : détecte la mémoire réelle requise pour une requête et, lorsqu’une instruction de requête identique est lancée, alloue un espace de mémoire plus précis. Cela permet d’éviter les allocations de mémoire excessives, qui peuvent réduire la capacité de traitement en parallèle, de même que les allocations de mémoire insuffisantes, qui peuvent causer de coûteuses fuites de mémoire.
Correction automatique des plans

Les nouvelles fonctionnalités de SQL Server 2017 détectent les régressions de choix de plan et proposent des recommandations sur la façon de résoudre le problème. Ces fonctionnalités de correction automatique des plans aident à préserver le rendement des requêtes de données, même lorsque des changements se produisent dans l’application.

Perfectionnement automatique : cette fonction de base de données donne un aperçu des possibles problèmes de rendement de requêtes, recommande des solutions et règle automatiquement les problèmes relevés.

Application du dernier bon plan : pour éviter tout problème de rendement inattendu, les utilisateurs doivent surveiller périodiquement le système et rechercher des requêtes qui ont régressé. Si un plan a régressé, il est avantageux de trouver un plan précédent qui fonctionnait bien et de l’appliquer pour remplacer le plan actuel. Grâce à cette fonctionnalité, vous pouvez surveiller le rendement d’une requête exécutée à l’aide du plan appliqué et vérifier si ce plan fonctionne comme prévu.

Détection automatique de la régression : le moteur de base de données détecte les possibles régressions dans le choix de plans et affiche les actions recommandées à appliquer dans la vue `sys.dm_db_tuning_recommendations`. Cette vue affiche des renseignements sur le problème, dont son importance et des détails comme la requête touchée, l’ID du plan en régression, l’ID du plan utilisé comme référence pour la comparaison et l’instruction Transact-SQL que l’on peut exécuter pour corriger la situation.

Perfectionnement automatique des plans : le moteur de base de données peut revenir au dernier bon plan aussitôt qu’il détecte une régression.

Reconstruction d’index en ligne avec reprise

La planification, l’entretien et la gestion en ligne d’un index de grande taille peuvent représenter un défi. Plus l’index est volumineux, plus il est difficile de l’entretenir. Réorganiser et reconstruire des index peut s’avérer particulièrement exigeant. Dans SQL Server 2017, la reconstruction d’index en ligne avec reprise permet de continuer une telle opération de reconstruction après une défaillance (par exemple, en cas de basculement vers une copie ou d’espace disque insuffisant). La reconstruction d’index en ligne avec reprise permet également de mettre l’opération sur pause et de la reprendre plus tard. Par exemple, vous devrez peut-être libérer temporairement des ressources système pour exécuter une tâche prioritaire ou terminer la reconstruction d’index à un autre moment si la fenêtre d’entretien est trop courte pour une grande table. Enfin, le journal de la reconstruction d’index en ligne avec reprise ne nécessite pas beaucoup d’espace, ce qui vous permet d’effectuer sa troncature pendant l’exécution de l’opération.

Les opérations d’entretien d’index en ligne sans reprise sont une fonctionnalité de SQL Server Enterprise Edition depuis SQL Server 2005.

SQL Graph

Les clients n’ont pas seulement besoin de gérer de grands volumes de données. Ils doivent également analyser leurs données existantes plus efficacement afin de comprendre leurs relations et tendances. Interroger des données d’un schéma relationnel à des requêtes SQL traditionnelles peut s’avérer une tâche complexe. SQL Server 2017 comprend SQL Graph, un outil qui facilite la modélisation et l’analyse de relations en permettant aux utilisateurs de gérer les relations d’une manière plus souple et plus agile.
Une base de données de graphiques est un ensemble de nœuds (ou sommets) et d’extrémités (ou relations). Une base de données de graphiques est utile pour représenter des données qui comprennent de nombreuses relations souvent complexes. SQL Graph dans SQL Server 2017 pousse les capacités de traitement graphique jusque dans SQL Server, permettant ainsi aux utilisateurs de lier les différents éléments de données connectées afin de les aider à recueillir des renseignements utiles et d’augmenter leur souplesse opérationnelle. Cette fonction convient bien aux applications dans lesquelles les relations sont importantes, comme la détection de fraudes, la gestion des risques, les réseaux sociaux, les moteurs de recommandation, l’analyse prédictive et les suites de l’IoD.

Créez des objets de graphique

- Créez des nœuds et des extrémités
- Propriétés associées aux nœuds et aux extrémités

CRÉEZ une personne pour la TABLE (CLÉ PRINCIPALE À NOMBRE ENTIER DE L’ID, nom VARCHAR(100)) COMME NOUD;

CRÉEZ un restaurant pour la TABLE (CLÉ PRINCIPALE À NOMBRE ENTIER DE L’ID, nom VARCHAR(100)) COMME NOUD;

CRÉEZ les favoris pour la TABLE COMME EXTÉRÉMITÉ;

CRÉEZ les amis pour la TABLE (date StartDate) COMME EXTÉRÉMITÉ;

Dans SQL Graph, les opérations CRUD (créer, lire, mettre à jour et supprimer) créent de façon efficace des nœuds qui représentent les différentes entités et des extrémités qui représentent les relations entre deux nœuds. Les nœuds et les extrémités peuvent être associés à des propriétés. En outre, SQL Graph peut effectuer une navigation à plusieurs sauts dans un graphique à l’aide de l’appariement de formes (sans jointures). Les extensions de langage SQL qui servent à prendre en charge les graphiques permettent de réaliser des requêtes à l’aide de l’appariement de formes sans jointures pour naviguer par sauts multiples.
Pour obtenir plus de renseignements sur les fonctionnalités de base de données graphiques, consultez le document **Traitement de graphique avec SQL Server et la base de données Azure SQL**.

Gouverneur de ressources

Une fonctionnalité offerte depuis SQL Server 2008, le gouverneur de ressources fournit des commandes puissantes et flexibles qui dictent et surveillent l’exécution d’une instance de SQL Server par rapport à l’utilisation du processeur, à la mémoire et au temps de réponse. Le gouverneur de ressources permet d’affecter une partie des ressources du processeur, de la mémoire et d’E/S à une charge de travail à un niveau global (pour les utilisateurs des bases de données et les groupes) ou à un niveau de demande individuelle.

Vous pouvez utiliser le gouverneur de ressources non seulement pour limiter l’utilisation maximale dans certains scénarios, mais aussi pour essayer de garantir des valeurs minimales, ce qui vous permet de perfectionner et d’équilibrer vos charges de travail et d’allouer les bonnes ressources aux utilisateurs appropriés au bon moment. Vous pouvez également utiliser le gouverneur de ressources pour observer l’utilisation des ressources, ce qui vous permet d’enregistrer les résultats et de régler vos paramètres régulièrement afin de maximiser l’efficacité.

Le gouverneur de ressources repose sur trois composants centraux : les banques de ressources, les groupes de charges de travail et la fonction de classification. Une banque de ressources est comparable à une « tranche » de toutes les ressources de processeur, de mémoire et d’E/S disponibles pour l’instance de SQL Server. Un groupe de charges de travail s’apparente plutôt à un ensemble de demandes similaires (que l’on définit). La fonction de classification permet d’associer les demandes entrantes à un groupe de charges de travail en particulier (qui, à son tour, peut être associé à une banque de ressources unique). Ces requêtes sont ensuite restreintes par le gouverneur de ressources (bien que dans certaines configurations, les restrictions soient appliquées uniquement lorsqu’il existe un conflit important sur l’allocation des ressources du serveur).
Le gouverneur de ressources peut être avantageux notamment dans les situations suivantes :

- **Le regroupement** : vous pouvez utiliser les mesures recueillies par le gouverneur de ressources pour évaluer l'utilisation de ressources de serveur de charge de travail lorsque vous déterminez les éléments aptes à la consolidation sur une plateforme matérielle partagée.

- **Le rendement prévisible** : vous pouvez utiliser les limites du gouverneur de ressources afin d'éviter une requête abusive (généralement une requête ad hoc) de consommer toutes les ressources de serveur et de nuire au rendement des autres charges de travail sur le même serveur.

- **Les contrats de niveaux de service** : vous pouvez utiliser la configuration minimale du gouverneur de ressources pour veiller à ce qu’un pourcentage des ressources du serveur soit toujours disponible pour un certain groupe ou une certaine charge de travail, quel que soit le comportement de la moindre charge de travail active sur le serveur.

- **La rétrofacturation** : le gouverneur de ressources peut vous permettre de suivre l'utilisation des ressources au sein d'une diversité de groupes, de charges de travail et d'applications au fil du temps. En plus de pouvoir facturer les unités d'affaires convenablement, vous serez en mesure d'évaluer lesquels de ces groupes consomment le plus de ressources.

Une haute disponibilité essentielle sur n’importe quelle plateforme

Les solutions de haute disponibilité de SQL Server optimisent le temps d’activité stratégique, accélèrent le basculement, renforcent la gérabilité et améliorent l'utilisation des ressources matérielles.

Des instances de grappes de basculement AlwaysOn qui offrent une haute disponibilité

Une instance de grappe de basculement (FCI) Always On offre une redondance au niveau de l’instance, ce qui permet à une instance de SQL Server de rester disponible durant les pannes de système d’exploitation prévues et imprévues causées par une défaillance matérielle, une défaillance logicielle ou un entretien du système. Les FCI sont pris en charge sur Windows et Linux.
Une instance de grappe de basculement comprend au moins deux nœuds de grappe ayant accès au stockage partagé entre les grappes (que ce soit des réseaux de stockage ou du stockage à connexion directe). Un seul nœud est actif à la fois. Les nœuds secondaires sont passifs, mais ils sont tout de même prêts à assumer le rôle de nœud actif pendant le basculement. Une instance de grappe de basculement nécessite un gestionnaire de grappes pour gérer les ressources des grappes. Sous Windows, elle utilise la mise en grappe de basculement Windows Server (WSFC). Sous Linux, le gestionnaire de grappes pris en charge est Pacemaker. Pour obtenir plus de renseignements sur les capacités de cette fonctionnalité, consultez la page sur les instances de grappe de basculement AlwaysOn (SQL Server).

Bases de données à disponibilité élevée grâce aux groupes de disponibilité AlwaysOn

Un groupe de disponibilité prend en charge un environnement répliqué d’un ensemble distinct de bases de données des utilisateurs, également appelées des bases de données de disponibilité. Vous pouvez créer un groupe de disponibilité de type haute disponibilité ou avec échelle lecture. Un groupe de haute disponibilité est en fait un groupe de bases de données qui bascule ensemble. Un groupe de disponibilité avec échelle lecture représente plutôt un groupe de bases de données copiées dans d'autres instances de SQL Server pour une charge de travail en lecture seule. Les groupes de disponibilité prennent en charge un ensemble de bases de données principales et d’un à huit ensembles de bases de données secondaires correspondantes. Les groupes de disponibilité AlwaysOn offrent le même niveau de haute disponibilité et de reprise après sinistre que les bases de données en grappe Oracle Real Application Clusters. Seule différence : ils nécessitent moins de serveurs et ils sont compris dans la licence principale de SQL Server.

SQL Server 2017 propose les fonctionnalités améliorées suivantes afin de garantir une haute disponibilité durant l'exécution de charges de travail stratégiques.
Flexibilité pour les architectures de haute disponibilité

SQL Server 2017 prend en charge deux architectures différentes pour les groupes de disponibilité : AlwaysOn et avec échelle lecture.

Les groupes de disponibilité avec échelle lecture : ils fournissent des copies de charge de travail avec échelle lecture, mais pas une disponibilité élevée. Ce type d’architecture ne requiert pas de gestionnaire de grappes et il peut comprendre de copies secondaires dans différents systèmes d’exploitation, un avantage très important. Les groupes de disponibilité avec échelle lecture sont une nouveauté de SQL Server 2017.

Groupes de disponibilité AlwaysOn pour Linux

Les groupes de disponibilité AlwaysOn sont maintenant compris dans l’édition Linux, ce qui permet aux clients de tester la robustesse du logiciel de base de données lors de l’exécution de charges de travail stratégiques. Cette fonctionnalité est maintenant offerte sur toutes les distributions Linux prises en charge par SQL Server 2017 (Red Hat Enterprise Linux, Ubuntu et SUSE Enterprise Linux). Toutes les fonctionnalités transformant les groupes de disponibilité en une solution de bases de données haute disponibilité et récupération d’urgence (HADR) à la fois flexible, intégrée et efficace sont offertes sous Linux : la reprise de plusieurs bases de données, les multiples bases de données secondaires synchrones et asynchrones, le basculement manuel ou automatique, les bases de données secondaires actives pour la lecture et la sauvegarde de charges de travail et plus encore. Pour obtenir plus de renseignements sur les capacités de cette fonctionnalité, consultez la page Groupes de disponibilité pour SQL Server sur Linux.
Les instances membres d’un seul groupe de disponibilité AlwaysOn peuvent s’exécuter sous Windows, Linux ou un mélange des deux systèmes d’exploitation. Les organisations prévoyant migrer leurs serveurs SQL Server vers Linux peuvent ainsi facilement tester les charges de travail et les applications avant le basculement.

Équilibrage de charge des copies secondaires accessibles en lecture

Les copies secondaires permettent un accès en lecture seule à toutes les bases de données secondaires. En règle générale, ces copies sont synchronisées avec la copie principale, y compris les index de texte intégral et les tables durables à mémoire optimisée. Les copies secondaires proposent donc des services similaires à ceux d’un minientrepôt de données : elles offrent un accès en lecture seule aux données de production avec peu de latence. La charge du routage des demandes de lecture seule peut également être équilibrée sur l’écouteur de groupe de disponibilité. Les organisations sont alors en mesure de contrôler le routage des charges en lecture seule aux copies secondaires. Pour obtenir plus de renseignements, consultez la page Configurer le routage en lecture seule pour un groupe de disponibilité (SQL Server).
SQL Server 2017 et l’entreposage de données massives

Entreposage d’un pétaoctet de données

L’évolution de SQL Server n’a fait que réaffirmer l’objectif de Microsoft : créer un entrepôt pouvant stocker un pétaoctet de données. Avec SQL Server 2017, cette capacité de stockage est également offerte sur Linux. SQL Server 2017 installé sur Red Hat Enterprise Linux et HPE ProLiant a récemment établi un nouveau record mondial pour le test d’évaluation TPC-H 1TB des performances d’un entrepôt de données non groupées. Il a donc été démontré que les performances de SQL Server sont les mêmes sous les systèmes d’exploitation Windows et Linux.

Maximisez l’échelle avec Windows Server 2016

24 To de mémoire + Noyaux maximaux de Windows Server

5 Delivering AI with data: the next generation of the Microsoft data platform (lien)

6 Microsoft SQL Server, Linux and HPE Performance Benchmark Love Story (lien)
Interrogation de n’importe quel type de données

La technologie PolyBase de SQL Server permet aux organisations de combiner des données structurées avec des données semi-structurées et non structurées dans des plateformes comme le stockage de grands objets binaires d’Azure ou Hadoop. Elle prend en charge l’interrogation de données stockées dans les deux magasins à l’aide de T-SQL. Il n’est donc plus nécessaire d’intégrer d’autres langages de requêtes. PolyBase permet également d’importer des données de Hadoop, du stockage de grands objets binaires d’Azure et d’Azure Data Lake Store ou encore d’exporter des données vers ces plateformes sans nécessiter de processus distincts d’importation ou d’extraction, de transformation et de chargement (ETL). De plus, l’optimisation des requêtes de PolyBase transmet les calculs aux grappes Hadoop afin de créer des tâches MapReduce et d’ainsi accroître l’efficacité des requêtes distribuées.

Bien que PolyBase vous permette de déplacer des données dans un scénario hybride, il est courant de laisser les données où elles se trouvent et de les interroger à la source. Cela se rapporte au concept de lac de données. Imaginez le lac de données comme un accès complet aux données massives brutes, sans les déplacer. C’est une autre façon de voir le processus de traitement des données massives en vue de les analyser plus facilement, plutôt que de les déplacer et de les synchroniser dans un entrepôt de données. Il y a divers avantages à ne pas déplacer des données. En général, cela signifie assurer la connectivité dans le lac de données sans aucun développement supplémentaire. D’ailleurs, les limites organisationnelles du déplacement ou de la modification des données pourraient devenir inutiles avec cette approche. Enfin, le traitement et la synchronisation des données peuvent être complexes, et il se peut que vous ne sachiez pas à l’avance comment traiter les données pour offrir les meilleurs renseignements. SQL Server 2017 et PolyBase peuvent être des composantes importantes lors de la configuration d’un lac de données, de sa combinaison avec vos données relationnelles et de l’exécution d’analyses et de BI sur celles-ci.

Afin de conserver la performance à l’échelle, l’architecture PolyBase prend en charge la mise à l’échelle des nœuds SQL Server. Il est possible d’ajouter plusieurs instances de SQL Server à un groupe PolyBase géré par un nœud principal. Vous transmettez des requêtes PolyBase au nœud principal, qui distribue la charge de travail à l’ensemble des nœuds de calcul du groupe PolyBase.
Veuillez noter que la fonctionnalité PolyBase est uniquement offerte sous Windows pour l’instant.

Index columnstore regroupés pour l’entreposage de données

Depuis sa version 2014, SQL Server prend en charge des index columnstore regroupés pouvant être mis à jour. Ils remplacent les tables rowstore traditionnelles. Les index columnstore regroupés permettent aux utilisateurs de modifier et de charger simultanément des données pour les charges de travail d’entrepôt de données et de système d’aide à la décision. La réduction des entrées et sorties ainsi que l’optimisation de l’exécution des requêtes accélèrent jusqu’à 100 fois la performance des requêtes. Pour ce faire, on utilise des techniques comme l’application de prédicats dans un format compressé, la transmission des prédicats à la couche de stockage (lorsque c’est possible), l’utilisation de nouvelles architectures de processeur et le nouveau mode d’exécution par LOTS.

Dans un cas typique, on convertirait une table de faits tirée d’un tas rowstore ou d’un index regroupé en un index columnstore regroupé. En plus d’être rapide et modifiable, ce type d’index permet d’effectuer rapidement des requêtes ad hoc sans nécessiter d’index supplémentaires.

Partitionnement de tables

SQL Server prend en charge le partitionnement d’index et de tables depuis sa version 2005. Les données des tables et des index partitionnés sont divisées en unités qu’il est possible de répartir dans plus d’un groupe de fichiers d’une base de données. Les données sont partitionnées horizontalement afin que les groupes de lignes soient mappés en partitions individuelles. Toutes les partitions d’un index ou d’une table doivent se trouver dans la même base de données. La table ou l’index est considéré comme une entité logique unique lorsque les données sont mises à jour ou font l’objet de requêtes.
Le partitionnement de tables ou d’index importants peut offrir les avantages suivants en matière de gestion et de performance :

- vous pouvez transférer ou consulter des sous-ensembles de données avec rapidité et efficacité, tout en préservant l’intégrité d’une collecte de données. Par exemple, une opération comme le transfert de données d’un système de traitement transactionnel en ligne vers un système de traitement analytique en ligne ne prend que quelques secondes contrairement aux minutes et aux heures requises si les données ne sont pas partitionnées;

- vous pouvez effectuer plus rapidement des activités d’entretien sur plusieurs partitions à la fois. Les activités sont plus efficaces, car elles ciblent uniquement les sous-ensembles de données plutôt que toute la table. Par exemple, vous pouvez compresser les données d’une ou de plusieurs partitions ou reformer une ou plusieurs partitions d’un index;

- vous pourriez remarquer une amélioration de la performance des requêtes selon votre configuration matérielle et le type de requêtes que vous réalisez fréquemment. Par exemple, l’optimiseur de requête traite plus rapidement des requêtes d’équijoin entre deux ou plusieurs tables partitionnées lorsque les colonnes de partitionnement des tables sont les mêmes, car il est possible de joindre les partitions;

- lorsque SQL Server trie les données d’opérations d’entrée et de sortie, il trie d’abord les données par partition. Il accède à un disque à la fois, ce qui peut ralentir les performances. Pour accélérer le tri des données, répartissez les fichiers de données de vos partitions sur plusieurs disques en mettant en place un réseau redondant de disques indépendants. De cette façon, même si SQL Server trie les données par partition, il peut accéder simultanément à tous les lecteurs de chaque partition. En outre, vous pouvez améliorer les performances en appliquant une escalade de verrous au niveau de la partition plutôt qu’à l’ensemble de la table. Les conflits de verrou dans la table seront alors réduits.
SQL Server 2017 et la veille stratégique

Reporting Services

SSRS offre un portail Web réactif reposant sur le langage HTML5. Les utilisateurs peuvent ainsi parcourir, rechercher, consulter et gérer des rapports (paginés et mobiles) à l’aide d’un navigateur moderne permettant d’accéder à tous vos rapports au même endroit. Un agent de planification et de remise actualise les jeux de données, établit des rapports selon un calendrier défini et envoie des rapports paginés aux utilisateurs par courriel entre autres. La base de données du serveur de rapports, reposant sur SQL Server Database Engine, stocke et gère le catalogue de contenus, y compris les sources de données, les jeux de données, les rapports paginés ou mobiles et les KPI. La base de données peut se trouver sur le serveur de rapports ou sur un autre serveur exécutant SQL Server.
Reporting Services prend en charge les rapports tabulaires traditionnels ainsi que les rapports et les tableaux de bord mobiles.

L'outil Reporting Services de SQL Server 2017 comprend de nombreuses fonctionnalités inédites, y compris :

- **les commentaires** – il est maintenant possible d'intégrer des commentaires aux rapports afin d'élargir le point de vue et de collaborer avec les autres; Vous pouvez également joindre des pièces jointes contenant des commentaires;
- **une meilleure prise en charge DAX** – vous pouvez maintenant utiliser le Générateur de rapports et SQL Server Data Tools pour créer des requêtes DAX natives à partir des modèles de données tabulaires SQL Server Analysis Services pris en charge. Vous n’avez qu’à glisser les champs voulus dans les concepteurs de requêtes.

Pour obtenir plus de renseignements sur les fonctionnalités de Reporting Services, consultez la page sur Reporting Services. Veuillez noter que la fonctionnalité Reporting Services est uniquement offerte sous Windows pour l’instant.

Power BI Report Server

Ensemble de services et de fonctions, Power BI permet à votre organisation de partager, de visualiser et d’analyser des données en libre-service de façon collaborative. De plus, il peut se connecter à une combinaison de sources de données sur place et en ligne, qui peuvent être mises à jour automatiquement selon un calendrier fixe. Vous pouvez également utiliser Power BI pour présenter vos modèles de rapports et de données sur place existants.
Avec Power BI Desktop, les utilisateurs peuvent concevoir en libre-service des rapports, des tableaux de bord et des modèles de données qui se connectent à un large éventail de sources de données. Pour obtenir plus de renseignements sur les capacités de Power BI Desktop, consultez la page sur le centre relatif à Power BI Desktop.

Grâce au service Power BI, les utilisateurs stockent et consultent des rapports Power BI dans le nuage public de Microsoft à l’aide d’un navigateur ou d’appareils mobiles. De son côté, le service Power BI Premium permet aux utilisateurs de partager des rapports Power BI et de collaborer. Pour obtenir plus de renseignements sur les capacités de Power BI, consultez la page sur le centre relatif à Power BI.

Power BI Report Server s’appuie sur SQL Server 2017 Reporting Services afin que les rapports conçus dans Power BI Desktop soient déployés sur un serveur sur place plutôt que sur le service infonuagique de Power BI. Grâce à cet outil, les organisations dont les politiques en matière de protection des données interdisent l’utilisation du service infonuagique public de Power BI profitent tout de même des avantages des rapports Power BI. Un abonnement au service Power BI Premium comprend une licence Power BI Report Server, ce qui permet aux organisations de concevoir des rapports Power BI sur les serveurs sur place qui peuvent ensuite être migrés dans le nuage.

Analysis Services

La version 2017 de l’outil SQL Server Analysis Services (SSAS) offre des capacités modernes de connectivité et de transformation de données, en plus de prendre en charge les sources de données Power BI. Il vous propose également quelques capacités évoluées de modélisation de données de veille stratégique, telles que les transformations d’applications Web hybrides, les fonctions d’exploration et les hiérarchies déséquilibrées. Il est possible de configurer SSAS afin d’utiliser les modèles tabulaires en mémoire ou les cubes OLAP multidimensionnels traditionnels.

SQL Server Analysis Services propose plusieurs méthodes pour créer un modèle sémantique de veille stratégique : modèle tabulaire, modèle multidimensionnel (cubes OLAP) et modèle PowerPivot pour SharePoint.

En disposant de plus d’une méthode, les entreprises et les utilisateurs profitent d’une expérience de modélisation adaptée à leurs besoins. Le modèle multidimensionnel est une technologie mature reposant sur les normes ouvertes, qui sont adoptées par de nombreux fournisseurs de logiciels de veille stratégique. Il est toutefois plus difficile à maîtriser. Le modèle tabulaire offre une méthode de modélisation relationnelle que beaucoup de développeurs considèrent comme plus intuitive. Le modèle PowerPivot est encore plus simple : il propose une modélisation de données visuelles dans Excel combinée aux capacités de publication sur serveur fournies par SharePoint. Tous les modèles sont déployés sous forme de bases de données exécutées sur une instance d’Analysis Services. Les outils client y accèdent à l’aide d’un seul ensemble de fournisseurs de données, et les modèles sont visualisés dans des rapports interactifs et statiques par l’intermédiaire d’Excel, de Reporting Services, de Power BI et d’outils de veille stratégique d’autres fournisseurs.

Les modèles tabulaires et multidimensionnels emploient des données importées de sources externes. Il est possible que la quantité et la nature des données que vous devez importer déterminent le type de modèle convenant le mieux à vos données. Les solutions tabulaires et multidimensionnelles compressent toutes les deux les données, ce qui permet de réduire la taille de la base de données Analysis Services par rapport à l’entrepôt de données duquel vous importez les données. Puisque la compression réelle variera selon les caractéristiques des données sous-jacentes, il n’y a aucun moyen de savoir avec précision l’espace disque et la quantité de mémoire qu’exigera une solution après le traitement des données et leur utilisation dans des requêtes.

Les bases de données tabulaires sont exécutées en mémoire ou en mode DirectQuery, qui transmet l’exécution de la requête à une base de données externe. Pour l’analyse en mémoire, la base de données tabulaire est entièrement stockée en mémoire. Vous devez donc disposer de suffisamment de mémoire afin de charger toutes les données et de créer des structures de données supplémentaires pour prendre en charge les requêtes. Fonctionnalité revue dans SQL Server 2016, DirectQuery impose moins de restrictions qu’auparavant et offre de meilleures performances. Il est maintenant plus facile que jamais de concevoir un modèle tabulaire à grande échelle en utilisant la base de données relationnelle principale pour le stockage et l’exécution des requêtes. En cas de déchargement multidimensionnel, le mode ROLAP permet de stocker des données et d’exécuter des requêtes. Sur un serveur de requêtes, il est possible de mettre en cache les ensembles de ligne ainsi que de créer un renvoi à la page pour ceux qui sont désuets.

Dans SQL Server 2017, Analysis Services comprend de nombreuses fonctionnalités inédites, y compris :

- une sécurité de niveau objet pour les modèles tabulaires;
- des améliorations possibles aux données – de nouvelles sources de données offrant une expérience moderne d’utilisation des modèles tabulaires;
- une meilleure prise en charge des hiérarchies déséquilibrées – une nouvelle fonction permettant de masquer les membres vides dans les hiérarchies déséquilibrées.

Pour obtenir plus de renseignements sur les capacités d’Analysis Services, consultez la page sur Analysis Services. Veuillez noter que la fonctionnalité Analysis Services est uniquement offerte sous Windows pour l’instant.
SQL Server 2017 et les analyses avancées

Cette innovation de pointe en matière d’analyses avancées permet aux organisations d’obtenir plus rapidement des renseignements. Grâce à la prise en charge des langages R et Python, les utilisateurs emploient leurs outils préférés et analysent leurs données à la source. De plus, ils peuvent profiter de la parallélisation à l’échelle et des algorithmes avancés d’apprentissage automatique avec processeurs graphiques. Par exemple, un utilisateur peut organiser des données sous forme de columnstore, employer le langage R ou Python pour créer des prédictions, stocker des données dans des tables OLTP en mémoire et les visualiser à l’aide de Power BI ou de Reporting Services. En résumé, il s’agit de la première base de données commerciale dotée de fonctions intégrées d’analyse avancée et d’apprentissage automatique.

SQL Server 2017, un essentiel pour l’intégration des données et la gestion de l’information

SQL Server Integration Services

Fonctionnalité présentée dans la version 2005 de SQL Server, SQL Server Integration Services (SSIS) est une plateforme permettant de créer des solutions d’intégration et de transformation de données pour entreprise. Utilisez-la pour résoudre des problèmes d’entreprise complexes : copier ou télécharger des fichiers, envoyer des courriels en réponse à des événements, mettre à jour des entrepôts de données, nettoyer et parcourir des données ainsi que gérer des objets et des données SQL Server. Les paquets peuvent fonctionner seuls ou avec d’autres paquets pour répondre à des besoins commerciaux complexes. Integration Services extrait et transforme des données provenant de diverses sources, comme les fichiers de données XML, les fichiers plats et les sources de données relationnelles. La plateforme les transfère ensuite à un ou à plusieurs emplacements.

Integration Services comprend un ensemble complet de tâches et de transformations intégrées, d’outils de conception de paquets ainsi que de fonctions d’exécution et de gestion de paquets. Vous pouvez utiliser les outils graphiques d’Integration Services pour créer des solutions sans écrire une seule ligne de code. Vous pouvez également programmer le modèle objet extensible d’Integration Services pour concevoir des paquets ainsi que coder des tâches personnalisées et d’autres objets de paquet.

La version 2017 de SQL Server Integration Services comprend de nombreuses fonctionnalités inédites, y compris :

- **la prise en charge de Linux** – vous pouvez maintenant exécuter des paquets SSIS sur les ordinateurs sous Linux;
- **la prise en charge de la mise à l’échelle** – la fonctionnalité de mise à l’échelle de SSIS comprend un maître de montée en puissance parallèle et un ou plusieurs travailleurs de montée en puissance parallèle. Le maître de montée en puissance parallèle se charge de la gestion de la mise à l’échelle et reçoit les demandes d’exécution de paquets transmises par les utilisateurs. Les travailleurs de montée en puissance parallèle extraient les tâches du composant maître et exécutent la demande. La mise à l’échelle offerte par Integration Services peut être configurée sur une machine, qui comprend un maître et un travailleur de montée en puissance parallèle. Elle peut également être exécutée sur de nombreuses machines alors que le travailleur de montée en puissance parallèle sur trouve sur un appareil différent.

Pour obtenir plus de renseignements sur les capacités d’Integration Services, consultez la page sur SQL Server Integration Services.
Master Data Services

Fonctionnalité initialement intégrée à SQL Server 2008 R2, Master Data Services vous permet de gérer un jeu de données de référence de votre organisation. Vous pouvez organiser les données en modèles, créer des règles de mise à jour et gérer les utilisateurs autorisés à les mettre à jour. À l’aide d’un complément Excel et d’une application Web, vous avez la possibilité de partager le jeu de données de référence avec d’autres personnes au sein de votre organisation.

Dans Master Data Services, le modèle est le conteneur se trouvant au niveau le plus élevé dans la structure de vos données principales. Vous devez créer un modèle pour gérer des groupes de données similaires (par exemple, les données sur les produits en ligne). Un modèle contient une ou plusieurs entités, qui comprennent des membres qui sont les enregistrements de données. Par exemple, votre modèle de données sur les produits en ligne peut contenir des entités comme le produit, la couleur et le style. L’entité de la couleur peut ensuite comprendre des membres pour les couleurs rouge, argent et noire.

SQL Server 2017 offre des performances accrues pour Master Data Services.

Pour obtenir plus de renseignements sur les capacités de Master Data Services, consultez la page sur la vue d’ensemble de Master Data Services. Veuillez noter que la fonctionnalité Master Data Services est uniquement offerte sous Windows pour l’instant.

Data Quality Services

Fonctionnalité offerte depuis SQL Server 2012, Data Quality Services (DQS) est un produit assurant la qualité des données en fonction des connaissances. Grâce à DQS, vous pouvez concevoir une base de connaissances et l’utiliser pour effectuer diverses tâches nécessaires à la vérification de la qualité des données, y compris la correction, l’enrichissement, la normalisation et la dédoublonage de vos données. Vous pouvez également nettoyer vos données à l’aide des services infonuagiques proposés par les fournisseurs de données de référence. L’outil DQS est également muni d’une fonction de profilage intégrée aux tâches de vérification de la qualité des données. Vous pouvez donc analyser l’intégrité de vos données.

DQS est composé des fonctionnalités Data Quality Server et Data Quality Client, qui sont toutes deux comprises dans SQL Server 2017. Data Quality Server est une fonctionnalité d’instance SQL Server qui comporte trois catalogues SQL Server, des capacités de stockage ainsi que des fonctionnalités relatives à la qualité des données. Fonctionnalité partagée de SQL Server, Data Quality Client permet aux utilisateurs professionnels, aux travailleurs de l’information et aux professionnels des TI d’effectuer des analyses informatisées de la qualité des données et d’en gérer la qualité de manière interactive. Vous pouvez également exécuter des processus de vérification de la qualité des données grâce au composant de nettoyage DQS d’Integration Services et à la fonctionnalité de vérification de la qualité des données Master Data Services, qui reposent tous deux sur DQS.

Avec la solution de vérification de la qualité des données fournie par DQS, un gestionnaire de données ou un professionnel de l’informatique peut assurer la qualité de ses données et veiller à ce qu’elles soient adaptées aux besoins de son entreprise. Solution axée sur la connaissance, DQS propose des moyens informatisés et interactifs pour gérer l’intégrité et la qualité de vos sources de données. De plus, vous serez en mesure de découvrir, d’acquérir et de gérer les connaissances au sujet de vos données. Vous pouvez ensuite employer ces connaissances pour réaliser le nettoyage, le rapprochement et le profilage de vos données. Vous disposez également des services infonuagiques des fournisseurs de données de référence pour mener des projets de vérification de la qualité des données dans DQS.
DQS propose les fonctionnalités suivantes pour résoudre les problèmes relatifs à la qualité des données :

- **le nettoyage des données** – la modification, la suppression ou l’enrichissement des données inexactes ou incomplètes à l’aide de processus interactifs et assistés par ordinateur;
- **le rapprochement** – la détection de doubles sémantiques à l’aide d’un processus fondé sur des règles qui vous permet de repérer les doublons et d’effectuer une déduplication;
- **les services de données de référence** – la vérification de la qualité de vos données au moyen des services d’un fournisseur de donnée de référence. Vous pouvez utiliser les services de données de référence de Microsoft Azure Marketplace pour nettoyer, valider, rapprocher et enrichir vos données;
- **le profilage** – l’analyse d’une source de données pour en évaluer la qualité à chaque étape de la découverte des connaissances, de la gestion des domaines, du rapprochement et du nettoyage des données. Le profilage est un outil puissant pour une solution de vérification de la qualité des données. Vous pouvez créer une solution dans laquelle le profilage est tout aussi important que la gestion des connaissances, le rapprochement ou le nettoyage des données;
- **la surveillance** – la surveillance et la détermination de l’état des activités de vérification de la qualité des données. La surveillance vous permet de vous assurer que votre solution de vérification de la qualité des données remplit bien sa fonction;
- **la base de connaissances** – Data Quality Services est une solution axée sur les connaissances qui analyse les données en fonction des connaissances acquises. Vous pouvez ainsi créer des processus de vérification de la qualité des données qui améliorent continuellement les connaissances liées à vos données ainsi que la qualité de vos données.

Pour obtenir plus de renseignements sur les capacités de Data Quality Services, consultez la page sur Data Quality Services. Veuillez noter que la fonctionnalité Data Quality Services est uniquement offerte sous Windows pour l’instant.
Sécurité de SQL Server 2017

Toutes les éditions de SQL Server offrent un ensemble robuste de fonctionnalités conçues pour isoler et protéger les données organisationnelles.

Always Encrypted

Always Encrypted est une fonctionnalité conçue pour protéger les données sensibles, telles que les numéros de carte de crédit ou les numéros d’identification nationaux (numéros de sécurité sociale), stockées dans Azure SQL Database ou les bases de données de SQL Server. Always Encrypted permet aux clients de chiffrer les données sensibles à l’intérieur de leurs applications et de ne jamais révéler les clés de chiffrement au moteur de base de données, qu’il s’agisse de SQL Database ou de SQL Server. Par conséquent, Always Encrypted permet de séparer les personnes qui possèdent les données de celles qui ne peuvent que les consulter et de celles qui peuvent les gérer sans y avoir accès. Always Encrypted veille à ce que les administrateurs de bases de données sur place, les opérateurs de bases de données infonuagiques et les autres utilisateurs à privilèges élevés n’ayant pas l’autorisation nécessaire ne puissent pas accéder aux données chiffrées. Les clients peuvent ainsi stocker en toute confiance des données sensibles hors de leur contrôle direct. Les organisations sont également en mesure de chiffrer les données au repos et en cours d’utilisation afin de les stocker dans Azure, de déléguer l’administration des bases de données sur place et de réduire les exigences d’habilitation pour leurs administrateurs de bases de données. Pour obtenir plus de renseignements, consultez la page sur la technologie [Always Encrypted](#).
Chiffrement transparent des données

Le chiffrement transparent des données peut être utilisé sur les fichiers de données SQL Server, Azure SQL Database et Azure SQL Data Warehouse. On appelle ce processus le « chiffrement des données au repos ». Les organisations peuvent prendre plusieurs précautions pour protéger leur base de données, comme la conception d'un système sécurisé, le chiffrement d'actifs confidentiels et la protection des serveurs de base de données au moyen de pare-feu. Toutefois, dans un scénario où les supports physiques (tels que les disques ou les bandes de sauvegarde) sont volés, un tiers malveillant peut restaurer ou rétablir la base de données et parcourir les données. L'une des solutions consiste à chiffrer les données sensibles dans la base de données et à protéger les clés de chiffrement au moyen d'un certificat. De cette façon, les personnes qui ne possèdent pas les clés sont incapables d'utiliser les données. Cette protection doit toutefois être configurée à l'avance.

Le chiffrement transparent des données effectue le chiffrement et le déchiffrement d'entrée et de sortie en temps réel des données et des fichiers journaux. Il fait appel à une clé de chiffrement de la base de données qui est stockée dans l'amorce de la base de données pour en permettre la disponibilité pendant la récupération. La clé de chiffrement de la base de données est une clé symétrique sécurisée à l'aide d'un certificat stocké dans la base de données maîtresse du serveur ou une clé asymétrique protégée par un module de gestion de clés extensible. Pour obtenir plus de renseignements, consultez la page Chiffrement transparent des données.

Sécurité au niveau des lignes

La sécurité au niveau des lignes (SNL) permet aux clients de contrôler l'accès aux lignes d'une table de base de données en fonction des caractéristiques de l'utilisateur exécutant une requête (appartenance à un groupe ou contexte d'exécution, par exemple).

La sécurité au niveau des lignes simplifie la conception et le codage de sécurité d'une application. Elle permet également aux organisations d'appliquer des restrictions sur l'accès aux lignes de données. Par exemple, une organisation peut faire en sorte que ses employés accèdent uniquement aux lignes de données pertinentes pour leur service ou bien que les clients aient seulement accès aux données pertinentes pour leur entreprise.

La logique de restriction des accès est directement dans la couche de base de données plutôt que dans une autre couche d'application. Le système de base de données applique les restrictions d'accès chaque fois qu'une tentative d'accès aux données est effectuée à partir de n'importe quelle couche. Le système de sécurité est ainsi plus fiable et plus robuste en réduisant sa surface. Pour obtenir plus de renseignements, consultez la page Sécurité au niveau des lignes.
Masquage dynamique des données

Le masquage dynamique des données limite l'exposition aux données sensibles en les cachant des utilisateurs n'ayant pas les droits nécessaires. Il peut être utilisé pour simplifier grandement la conception et le codage de sécurité dans une application.

Le masquage dynamique des données prévient l'accès non autorisé aux données sensibles en permettant aux organisations de déterminer le volume de données sensibles à révéler. En outre, il n'a que peu d'incidence sur la couche d'application. Le masquage dynamique des données peut être configuré dans la base de données pour cacher des données sensibles dans les ensembles de résultats des requêtes sur les champs de base de données désignés, sans modifier les données dans la base de données. Le masquage dynamique des données est facile à utiliser avec les applications existantes, car des règles de masquage sont appliquées dans les résultats de la requête. Dans de nombreuses applications, les données sensibles peuvent être masquées sans modifier les requêtes existantes. Pour obtenir plus de renseignements, consultez la page Masquage dynamique des données.

Vérification

SQL Server Audit permet aux clients de suivre et de consigner des événements qui se déroulent dans une instance du moteur de base de données ou dans une base de données individuelle. Les audits dans le serveur peuvent contenir des précisions sur les événements au niveau du serveur et les audits dans la base de données peuvent contenir des précisions sur les événements qui surviennent au niveau de la base de données. Les événements ayant fait l'objet d'un audit peuvent être consignés dans les journaux d'événements ou les dossiers d'audit.

SQL Server comprend différents niveaux d'audit, selon les exigences gouvernementales ou normatives relatives à votre installation. SQL Server Audit fournit les outils et processus dont vous avez besoin pour activer, stocker et consulter les audits sur plusieurs serveurs et bases de données. Pour obtenir plus de renseignements, consultez l'article sur SQL Server Audit.
Nuage avec SQL Server 2017

Le concept du nuage hybride reconnait que les organisations disposent généralement de différentes applications déployées à l'échelle de leur entreprise ainsi que divers environnements ayant des exigences uniques. Certaines applications nécessitent des configurations matérielles précises et complexes qui vont à l'encontre du déploiement dans le type d'environnement se voulant « universel » offert par l'infonuagique. De même, les nuages publics à très grande échelle sont intéressants pour les entreprises qui disposent d'applications connaissant des pics et des creux de demande importants, puisqu'il peut être économiquement infaisable d'accorder un niveau suffisant de matériel sur les lieux pour traiter les pics de demande. L'objectif de Microsoft pour la solution en nuage hybride est d'offrir aux organisations un vaste choix de manières et de lieux pour l'exécution de leurs applications tout en veillant à ce qu'elles puissent utiliser un ensemble commun de produits, d'outils et d'expertise quant au serveur dans un éventail de solutions.

Sauvegarde vers Azure

Votre stratégie de sauvegarde peut être grandement améliorée grâce à une approche infonuagique hybride. SQL Server offre de nombreuses options de sauvegarde sur Azure, y compris la sauvegarde gérée, la sauvegarde de grands objets binaires de blocs Azure et la sauvegarde d'istantanés dans le service de stockage Azure. La sauvegarde gérée permet de gérer et d'automatiser facilement les sauvegardes de SQL Server dans le service de stockage de grands objets binaires Azure. Vous pouvez gérer l'ensemble de l'instance ou les bases de données individuelles grâce à une interface conviviale, accessible directement dans l'Explorateur d'objets SQL Server Management Studio dans le nœud de gestion. Elle permet d'effectuer des sauvegardes hors site à redondance géographique et de contrôler la période de rétention, en plus de prendre en charge la restauration de points dans le temps pour la période de temps précisée.

La sauvegarde gérée peut également être configurée au niveau de la base de données ou de l'instance de SQL Server. Lors de la configuration au niveau de l'instance, les nouvelles bases de données sont également sauvegardées automatiquement. Les paramètres au niveau de la base de données peuvent être utilisés pour corriger les défauts au niveau de l'instance. Vous pouvez également chiffrer les sauvegardes pour une sécurité accrue et mettre en place un calendrier automatisé et personnalisé afin de contrôler quand les sauvegardes sont effectuées. La sauvegarde de grands objets binaires de blocs Azure vous permet de gérer les sauvegardes dans le service de stockage de grands objets binaires Azure en profitant d'un contrôle précis tout au long du processus.

SQL Server 2014 a instauré les fichiers de données dans Microsoft Azure, ce qui permet une prise en charge native pour les fichiers de base de données SQL Server stockés sous forme de grands objets binaires Azure. Vous êtes ainsi en mesure de créer une base de données dans SQL Server pouvant être exécutée sur les lieux ou sur une machine virtuelle Azure ayant un endroit consacré au stockage de vos données dans le service de stockage de grands objets binaires Azure. Cela fournit également un autre emplacement pour stocker vos fichiers de sauvegarde de base de données en vous permettant de les restaurer depuis ou vers le service de stockage Azure. La sauvegarde d'istantanés de fichier s'appuie sur cette capacité et correspond à la méthode la plus rapide et la moins chère pour créer des sauvegardes et effectuer des restaurations. Elle utilise des instantanés d'Azure afin de fournir des sauvegardes presque instantanées et des restaurations plus rapides pour les fichiers de base de données qui sont stockés à l'aide du service de stockage de grands objets binaires Azure. Cette fonctionnalité vous permet de simplifier vos politiques de sauvegarde et de restauration.
Contrairement au service de sauvegarde Azure avec des grands objets binaires de blocs, les données ne sont pas réellement déplacées. Lorsque les fichiers de base de données SQL Server sont stockés directement dans le service Azure Storage, un instantané de ces fichiers est plutôt créé. Vous n’avez qu’à exécuter une sauvegarde complète une fois pour établir la chaîne de sauvegarde. Les sauvegardes des instantanés réduisent l’utilisation des ressources de SQL Server pour créer la sauvegarde. C’est particulièrement utile pour les bases de données dont le volume varie de moyen à très grand, dans lesquelles les répercussions des sauvegardes peuvent être considérables.

Étant donné que chaque jeu de sauvegarde d’instantané de fichier contient un instantané de chaque fichier de la base de données, un processus de restauration nécessite, tout au plus, deux jeux de sauvegarde adjacents. C’est le cas peu importe si le jeu de sauvegarde provient d’une sauvegarde complète ou d’une sauvegarde de fichier journal. C’est très différent du processus de restauration lors de l’utilisation de fichiers de sauvegarde en continu traditionnelle pour effectuer le processus de restauration. Avec la sauvegarde en continu traditionnelle, le processus de restauration nécessite l’utilisation de l’ensemble de la chaîne des jeux de sauvegarde : la sauvegarde complète, une sauvegarde différentielle et une ou plusieurs sauvegardes de journaux de transaction. La partie de la reprise du processus de restauration reste la même, que la restauration soit effectuée à l’aide d’une sauvegarde d’instantanés de fichier ou d’un jeu de sauvegarde en continu.

SQL Server 2017 sur les machines virtuelles Azure

La plateforme Azure offre un moyen rapide et simple pour exécuter SQL Server dans un nuage public. Un vaste choix de versions et d’éditions de SQL Server est offert ; la galerie Azure contient des images d’ordinateur virtuel préintégrées pour toutes les versions de SQL Server actuellement prises en charge :

- SQL Server 2008 R2
- SQL Server 2012
- SQL Server 2014
- SQL Server 2016
- SQL Server 2017

Dans toutes les éditions :

- Enterprise
- Standard
- Web
- Developer
- Express

Les images de SQL Server 2017 peuvent être exécutées sur Windows Server 2016 ou Linux ; les versions antérieures de SQL Server peuvent être exécutées sur Windows. Les images de la galerie sont régulièrement retouchées avec les nouvelles versions de sécurité et de fonctionnalités. Les images de la galerie vous permettent de mettre sur pied une nouvelle machine virtuelle SQL Server en moins de 10 minutes.

On peut autoriser SQL Server sur les machines virtuelles Azure selon le coût par minute de l’exécution de l’image de la galerie (ce qui signifie que vous ne payez que pour ce que vous utilisez), ou les clients possédant l’Assurance-logiciels peuvent transférer leur propre galerie d’images dans Azure.
Les machines virtuelles Azure offrent des options de rendement convenant à n’importe quelle charge de travail, qu’il s’agisse de machines monocœur dotées d’une mémoire vive de 750 Mo ou de machines de 128 cœurs dotées d’une mémoire vive de 2 048 Go. Les machines virtuelles Azure prennent en charge la mise à l’échelle élastique, donc vous pouvez augmenter ou réduire la capacité de traitement selon la demande. Le service de stockage Azure Premium permet d’accéder facilement au stockage haute performance, offrant une latence de disque moyenne inférieure à 4 ms, ainsi qu’un cache de lecture local SSD avec une latence de moins de 1 ms. Vos données sont protégées contre toute défaillance matérielle grâce à trois copies locales et à trois copies à distance de chaque disque.

Azure est sécurisé et détient actuellement plus de certifications de sécurité que tout autre fournisseur de services d’informatique en nuage. La sécurité matérielle stricte restreint l’accès aux centres de données Azure; le chiffrage protège vos données des accès non autorisés. La sécurité réseau restreint l’accès des serveurs et services aux adresses IP de votre réseau Azure. L’accès à Azure à partir de réseaux externes peut être sécurisé avec TLS par l’entremise du réseau Internet public ou d’une connexion de réseau privé virtuel à vos centres de données. Pour en savoir plus sur la sécurité d’Azure, consultez le Centre de gestion de la confidentialité d’Azure.

En plus de vous permettre de déplacer facilement des charges de travail SQL Server existantes vers le nuage, SQL Server sur les machines virtuelles Azure peut intervenir différemment dans votre environnement SQL Server; par exemple, dans un groupe de disponibilité AlwaysOn, il joue le rôle d’un troisième centre de données aux fins de récupération d’urgence ou de distribution géographique des données.

Déployez SQL Server en fonction des besoins opérationnels, plutôt que de l’ensemble de fonctionnalités

Depuis l’édition SQL Server SP1 2016 (sortie en novembre 2016), Microsoft a apporté des améliorations clés qui fournissent aux développeurs et aux organisations une surface de programmabilité plus cohérente dans les éditions de SQL Server. Les clients et partenaires peuvent ainsi construire des applications de pointe qui s’adaptent aux éditions et au nuage à mesure de leur évolution. Les développeurs et les partenaires d’application peuvent compter sur une seule surface de programmation lorsqu’ils créent ou rehaussent des applications intelligentes et utiliser l’édition qui s’adapte aux besoins de chaque application. SQL Server 2017 offre maintenant cette fonctionnalité dans les autres plateformes. Cela comprend des fonctionnalités telles que OLTP en mémoire, Columnstore en mémoire, PolyBase, la compression et le partagement; des fonctionnalités de sécurité comme Always Encrypted, Sécurité au niveau des lignes et le masquage dynamique des données; et la production de rapports de base, l’analyse et l’apprentissage automatique (avec R et Python) qui sont offerts partout.
Limites d’échelle des solutions croisées

<table>
<thead>
<tr>
<th>Fonctionnalité</th>
<th>Enterprise</th>
<th>Standard</th>
<th>Express</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacité de calcul maximale utilisée par une instance unique – moteur de base de données SQL Server</td>
<td>Maximum du système d’exploitation</td>
<td>Limité à moins de 4 ports ou de 24 cœurs</td>
<td>Limité à moins de 1 port ou de 4 cœurs</td>
</tr>
<tr>
<td>Mémoire maximale utilisée par instance du moteur de base de données SQL Server</td>
<td>Maximum du système d’exploitation</td>
<td>128 Go</td>
<td>1,4 Go</td>
</tr>
<tr>
<td>Taille maximale de base de données relationnelle</td>
<td>524 Po</td>
<td>524 Po</td>
<td>10 Go</td>
</tr>
</tbody>
</table>

Ce tableau est un résumé. Pour obtenir une liste complète des fonctionnalités par édition, consulter Éditions et fonctionnalités prises en charge de SQL Server 2017.

Les éléments à prendre en considération quant au rendement sont d’abord le nombre de cœurs et l’attribution de mémoire. Ils comprennent également la taille maximale des bases de données et, probablement, les capacités d’entrée et de sortie, ainsi que le partitionnement de données, c’est-à-dire les capacités déterminées selon la charge prévue de données hébergées. Les éléments dont il faut tenir compte en matière de haute disponibilité sont axés sur le nombre de copies secondaires requis et si l’une d’entre elles nécessite des sauvegardes, un accès en lecture seule, et ainsi de suite. Si les exigences changent et qu’il faut faire la transition d’une application vers une autre édition de SQL Server, les composants touchés devront être transférés plutôt que réécrits.

Conclusion

SQL Server 2017 marque une autre étape dans l’évolution de SQL Server. Il continue de miser sur les capacités de pointe de SQL Server en matière de rendement et de sécurité par l’intermédiaire de nouvelles technologies et de l’innovation. Grâce à ces fonctionnalités de classe d’entreprise maintenant offertes sur n’importe quelle édition de SQL Server, les organisations peuvent également choisir la meilleure édition selon leurs besoins opérationnels. De nouvelles fonctionnalités comme la reconstruction d’index en ligne de reprise (Resumable Online Index Rebuild), le traitement de requêtes adaptatif et la correction automatique des plans permettent aux organisations d’optimiser leurs capacités de traitement des données. SQL Graph permet de cartographier et d’interroger des relations sous forme de graphique plutôt qu’à l’aide d’un schéma relationnel traditionnel. Enfin, puisque SQL Server est maintenant offert dans les systèmes d’exploitation Linux, ainsi que dans les conteneurs Linux et Windows, les organisations disposent d’une gamme d’options complète pour construire ou étendre leurs écosystèmes de données.

Appels à l’action

Pour obtenir plus de renseignements sur SQL Server, consultez le https://docs.microsoft.com/fr-ca/sql/index